
^

Prime SEG and LOAD
Reference Guide
Revision 19.2

D0C3524-192P

SEG AND LOAD
REFERENCE GUIDE

DOC3524-192
Second Edition

by

Anne P. Ladd

This guide documents the software operation of the Prime Computer and its
supporting systems and utilities as implemented at Master Disk Revision Level 19.2
(Rev. 19.2).

Prime Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice and should not be construed as a
commitment by Prime Computer Corporation. Prime Computer Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

Copyright © 1983 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic Design
Management System, EDMS, PRIMEWAY, and THE PROGRAMMER'S COMPANION are trademarks of
Prime Computer, Inc.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers Prime Employees

Software Distribution Communications Services
Prime Computer, Inc. MS 15-13, Prime Park
1 New York Ave. Natick, MA 01760
Framingham, MA 01701 (617) 655-8000 X4837
(617) 879-2960 X2053

Customers Outside U.S.

Contact your local Prime
subsidiary or distributor.

PRINTING HISTORY - SEG AND LOAD REFERENCE GUIDE

Edition

First Edition
Update 1
Update 2
Second Edition

Date

May 1980
December 1980
July 1982
June 1983

Number

PDR3524
PTU77
PTU83
DOC3524-192

Software Release

17.2
18
19
18, 19

Because the revisions are extensive, no change bars are included in the present edition.

SUGGESTION BOX

All correspondence on suggested changes to this document should be directed to:

Anne P. Ladd
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

CONTENTS

ABOUT THIS BOOK XI

PART I - SEG

OVERVIEW OF SEG

What Is in Part I of This Book

Overview of Seg
The Loader Function
Organization of the Runfile:

Segment Directories
Other Functions SEG Can Perform

PRIMOS Architecture and
Virtual Memory

V-mode and Other Addressing Modes
Segmentation and Paging
Relative and Absolute Segment

Numbers
Organization of Memory
Sharing
Restriction on User Segment

Allocation

Software Features of the
Operating System

Pure and Impure Code
Direct Entry Links

What Is Next

1-1

1-2
1-2

1-3
1-4

1-6
1-6
1-7

1-7
1-7
1-8

1-9

1-10
1-10
1-10

1-11

DEFAULT LOADS

Default Loading and Execution 2-1
Load Sequence 2-3
Error Messages 2-3
Examples of Default Loading

Sequences 2-3

The Older Loading Procedure 2-5

Segment Allocation in a
Default Load 2-6

Advantages of the Default Load 2-8

SEG LOAD MAPS

Reading the Load Map 3-2
Section 1 — Program Start 3-4
Section 2 — Segment Assignments 3-5
Section 3 — Base Areas 3-5
Section 4 — Symbols 3-7
Section 5 — Direct Entry Links 3-8
Section 6 — Common Blocks 3-8
Section 7 — Unsatisfied References

and Other Symbols 3-8

The Map Options 3-9

Using Load Maps 3-9
Checking for Unsatisfied

References 3-9
Locating Runtime Errors 3-10
Finding Why There Are No More

Available Segments 3-12
Looking at the Stack 3-14
Looking for Wasted Space 3-16
Refining Storage Allocation 3-18

ADVANCED SEG TECHNIQUES

Optimizing Runfile Size 4-2

Performing a Mixed Load 4-2

Making a RUNIT File 4-3
More About RUNIT 4-5

Managing Common Blocks 4-6
An Example Using SYMBOL 4-7

VI

Preparing Procedures for Sharing 4-10
Steps in Creating a Shared Program 4-10
Sharing Two Programs in the Same

Segment 4-13

Creating External Commands 4-14

Creating Shared Data 4-15

Example of Shared Data 4-16

Extending the Stack 4-18

Relocating the Stack 4-19

Replacing Program Modules 4-19
Creating and Using Templates 4-20

Creating the Shared Procedure
Segments 4-21

Creating the Template 4-21
Loading Programs into the Template 4-22

Allocating Base Areas 4-23

Using Relative Segment Numbers 4-24

SEG A N D SEG-LEVEL COMMANDS

Command Summary
SEG-level Commands
VLOAD or LOADER Processor

Subcommands
MODIFY Processor Subcommands

Operands for all Commands

The SEG Command

SEG-Level Commands
DELETE
HELP
LOADER
MAP
MODIFY
PARAMS
PSD
QUIT
RESTORE
RESUME
SAVE
SHARE
SINGLE
TIME
VERSION
VLOAD

5-1
5-2

5-3
5-4

5-4

5-4

5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-9
5-9
5-9

THE VLOAD OR LOADER PROCESSOR

ATTACH 6-1
AUTOMATIC 6-2
A/SYMBOL 6-2
COMMON 6-3
D/ 6-4
EXECUTE 6-5
F/ 6-5
IL 6-6
INITIALIZE 6-7
LIBRARY 6-7
LOAD 6-7
MAP 6-8
MIX 6-8
MV 6-8
NSCW 6-10
OPERATOR 6-10
P/ 6-10
PL 6-12
QUIT 6-12
R/SYMBOL 6-12
RETURN 6-13
RL 6-13
S/ 6-14
SAVE 6-15
SCW 6-16
SETBASE 6-16
SPLIT 6-16
SS 6-17
STACK 6-17
SYMBOL 6-18
SZ 6-19
XPUNGE 6-19

THE MODIFY PROCESSOR

NEW 7-1
PATCH 7-2
RETURN 7-2
SK 7-2
START 7-3
WRITE 7-3

V l l l

ERROR MESSAGES

Overview 8-1
SEG Error Messages 8-1
Common PRIMOS Error Messages 8-6
Messages from ERRPR$ 8-7
Cryptic Messages 8-8

PART II - LOAD

LOADING R-MODE PROGRAMS

Introduction

Using LOAD

Normal Loading
Order of Loading
Loading Library Subroutines
Load Maps

Advanced Loading Techniques
Virtual Loading
Object Code
Runfiles
Selecting the Addressing Mode
Address Resolution (Base Areas)
Locating Common Blocks
Unimplemented Instruction Interrupt

(UII) Handling
System Programming Features

9-1

9-1

9-2
9-3
9-4
9-4

9-5
9-5
9-5
9-6
9-6
9-6
9-7

9-7
9-8

10 LOAD COMMANDS

11 R-MODE LOAD MAPS

Load State 11-1
Base Areas 11-3
Symbol Storage 11-3
Common Blocks 11-3

12 LOAD ERROR MESSAGES 12-1

IX

APPENDIXES

A SEG'S FUNCTIONS A-l
B USE OF CMDSEG B-l
c OCTAL TABLES C-l
D SAMPLE PROGRAMS D-l
E A CPL PROGRAM FOR SHARING E-l
F LOCATING THE DEFAULT SPLIT F-l
G GLOSSARY G-l

INDEX X-l

ABOUT THIS BOOK

PURPOSE AND AUDIENCE
This is a detailed reference guide for Prime's linking loader utilities, SEG and LOAD. It is intended for
application programmers and system programmers who need information beyond the scope of the
summary information in each of Prime's language reference guides.

SEG is Prime's segmented loading utility, for generating segmented runfiles to execute in the V or I
addressing modes. LOAD is Prime's R-mode loading utility, for generating runfiles to operate in the R
addressing mode. Most programmers will use SEG, in order to take advantage of virtual memory and the
efficiency of the V-mode instruction set.

This book documents SEG and LOAD at software Revision 19.2. However, users who are still on a lower
revision of software should find that the present book is sufficient to explain all features of Revisions 18
and 19. The current edition of this book is intended to replace every previous edition for users of Rev. 18
and 19.

OTHER USEFUL BOOKS
Readers should be familiar with at least Chapters 1 through 7 of the Prime User's Guide (DOC4130-190),
and with the reference guide for one Prime programming language or for PMA, Prime's assembly
language. In addition, this book assumes that the reader has access to the Subroutines Reference Guide
(DOC3621-190).

XI

PRIME DOCUMENTATION CONVENTIONS
The following conventions are used in command formats, statement formats, and in examples
throughout this document. Command and statement formats show the syntax of commands, program
language statements, and callable routines. Examples illustrate the uses of these commands, statements,
and routines in typical applications. Terminal input may be entered in either uppercase or lowercase.

Convention

UPPERCASE

Explanation

In command formats, words
in uppercase indicate the
actual names of commands,
statements, and keywords.
They can be entered in
either uppercase or
lowercase.

Example

SLIST

lowercase In command formats, words
in lowercase indicate
items for which the user
must substitute a suitable
value.

SEG pathname

Abbreviations If a command or statement
has an abbreviation, it is
indicated by rust color
in list of commands.

MAP [option]

Rust color
in

examples

In examples, user input is
rust color but system
prompts and output are
not.

OK, SEG -LOAD

Brackets

[]

Brackets enclose a list of
one or more optional
items. Choose none, one,
or more of these items (0
to n).

SPOOL -LIST
-CANCEL

Default
Indicator

In a list of options, the
default, if one exists, is
indicated by a bullet (•).

MIX O N *
OFF

Convention
Braces

Explanation

Braces enclose a vertical
list of items. Choose one
and only one of these
items.

Example

CLOSE) filename I
ALL i

Ellipsis An ellipsis indicates that
the preceding item may be
repeated.

item-x[,item-y].

Parentheses

()

In command or statement
formats, parentheses must
be entered exactly as
shown.

data-name (index)

Hyphen Wherever a hyphen appears
in a command line option,
it is a required part of
that option.

PASCAL name -LIST

Angle brackets
< >

Angle brackets must be
used as shown to separate
the elements of a
pathname.

< FOREST > BEECH > LE AF4

Convention
filename.language
or filename

Filename Conventions

Explanation

Source file

Example

MYPROG.PASCAL

filename.BIN
or B_filename

Binary (object) file MYPROG.BIN

filename.LIST
or L_filename

Listing file MYPROG.LIST

filename.SEG Saved executable runfile
(V-mode)

MYPROG.SEG

filename.SAVE Saved executable runfile
(R-mode)

MYPROG.SAVE

Filenames may be comprised of 1 to 32 characters inclusive, the first character of which must be
nonnumeric. Names should not begin with a hyphen (-) or underscore (_). File names may be composed
only of the following characters: A-Z, 0-9, _ # $ & - * . and /.

See Chapter 2 for an explanation of how the various names for source, object, listing, and runtime files
relate to each other.

Note

On some devices, the underscore (_) may print as back arrow (•*•).

xiv

PARTI

SEG

1
OVERVIEW OF SEG

WHAT IS IN PART I OF THIS BOOK

Part I presents SEG, Prime's virtual-mode loader and execution utility. The following topics are
covered in Part I:

• Chapter 1 presents an overview of SEG's many functions and a discussion of some
features of Prime's virtual memory, architecture, and software that affect SEG.

• Chapter 2 discusses what happens on a default load.

• Chapter 3 shows how to read load maps produced by SEG.

• Chapter 4 presents, with examples, a series of advanced loading techniques by which
programmers can take advantage of special features of SEG for space saving, sharing,
and management of stacks, common blocks, and base areas.

• Chapters 5 through 7 list all commands and subcommands available through SEG.

• Chapter 8 discusses various error messages: not only those produced by SEG but also
those from PRIMOS when the cause can be corrected through SEG.

In addition, the appendixes present more aids in using some features of SEG. Appendix G is a
glossary of terms.

1-1 Second Edition

1 OVERVIEW OF SEG

OVERVIEW OF SEG

SEG is so named because it takes a program that has been divided into segments and assigns an
address within a virtual segment (described below) to each program segment. The default load
procedure described in Chapter 2 allows the user to ignore segmentation, as this procedure
handles it automatically. However, knowledge of SEG's procedures often allows a user to
create more efficient runfiles.

The Loader Function

SEG works on object files, executable binary files that are produced by compilation or
assembly from any Prime-supported language. An object file may contain one or more binary
modules.

SEG includes a loader that marks modules for specific virtual segments and produces a runfile
or executable file in the form of a segment directory. The organization of the runfile is
explained below.

SEG has a relocating loader — it does not load the program into a predetermined address, but
can start a program module almost anywhere. The addresses within the binary module are not
absolute addresses but rather are displacements from the beginning of that module. Thus two
or more separately compiled programs can be loaded without overlapping and without the
programmer having thought beforehand of giving them different starting addresses.

SEG's loader is also a linking loader. As it loads parts of a runfile, it can check to see that all
references or names within one module are defined by a data name, common block, or
procedure name in the same module or elsewhere within the runfile. If the reference is not
defined within the same module, it is called an external reference.

SEG maps a runfile into Prime's virtual addressing scheme, rather than loading it immediately
into the segments where it will run. When SEG stores the runfile, it stores the notation of
where in memory each part of it should be reloaded. The runfile may be new or may be a
previously used runfile, and may be in any directory. Chapter 2 discusses how to name the
runfile.

SEG is also used to execute these runfiles. Figure 1-1 represents the effects of SEG on a group of
binary object files, as it first loads them into a runfile and then moves that runfile into virtual
memory and executes it. The compiler or assembler produces object modules, each consisting
of procedure separated from data. The compiler may also produce common blocks. SEG creates
a runfile containing, in arbitrary order, subfiles that may be imagined as tagged with the
number of the virtual segment that each will occupy at runtime. At runtime, the code is moved
into the proper virtual segment for execution.

DOC3524-192 1-2

OVERVIEW OF SEG 1

Compilers
and
Assembler

/

\

Data
Segment
Prog 1

Procedure
for
Program 1

Data
Segment
Prog 2

Procedure
for
Prog 2

Common
Block

\

SEG

I Loader

I

I

Map
Debug Information
Data Subfile 4004
Data Subfile 4002

©

Proc Subfile 4003
Proc Subfile 4001

•
©

Common Block 4005

Runfile in Memory
or on Disk

(Segment Directory)

SEG
—>- as —p»

Exec.

Common

More Data

More Proc

Data &
Common

Proc

SEG

•
•

PRIMOS

Virtual
Memory

Segments

Binary Files

4005

4004

4003

4002

4001

4000

0000

Sample Input to and Output from SEG
Figure 1-1

Organization of the Runfile: Segment Directories

Each runfile created by the default SEG procedure is stored as a segment directory. The subfiles
in a segment directory make up a collection of segments. Each virtual segment in a segmented
runfile consists of up to 32 subfiles of 4096 bytes each. SEG can create a runfile as large as 256
segments or 8192 subfiles. Subfile 0 of the runfile is used for startup information, the load map
discussed below, and the subfile map. Subfile 1 has DBG information if the program was
compiled with the -DEBUG option. Executable subfiles begin in subfile 2.

If you give this runfile a name ending in .SEG, you will remember that this is not a simple file
and must be manipulated differently. The SEG utility will also be able to use the naming
conventions discussed in Chapter 2. If you use the command LD on your directory at Rev. 19,
you will see that segment directories are listed separately from simple files.

There are several differences between segment directories and simple files. In revisions lower
than 19, a segment directory cannot be deleted by the PRIMOS command DELETE. Instead, use
SEG's own DELETE command, or the TREDEL command of the FUTIL utility. TREDEL is
slower than SEG's DELETE, but may be necessary if load pointers were destroyed by aborting

1-3 Second Edition

! OVERVIEW OF SEG

SEG. The Subroutines Reference Guide discusses which subroutines can be used with segment
directories.

Other Functions SEG Can Perform

The rest of this chapter is devoted to describing the architecture and software features of
PRIMOS with which SEG interacts. First, however, here is a brief list of functions available
through the SEG utility. Appendix A describes these functions in more detail, with the
commands involved in each function. Chapter 4 describes, with examples, many of the special
techniques.

Produce Optimized Runfiles in Many Forms:

• If you don't want the default load of instructions and data into separate segments, you
can create runfiles with no division of function. These files are usually smaller than
runfiles created with the default loading method. For example, assume you have 100
programs, of which 20 might be running all the time, with many command streams
changing programs frequently. It would be worthwhile to try to get each one to
occupy as little virtual memory as possible, so that the system would not be allocating
more virtual segments than necessary.

• An optimized runfile may have a smaller, faster execution unit than SEG. SEG
includes a small execution unit called RUNIT. This unit can be loaded into a runfile,
and the whole file can occupy segment '4000 instead of putting SEG in '4000 and the
runfile in other segments. Execution is faster, and allows execution with RESUME as
well as execution of the program as a user-defined PRIMOS command. The resulting
runfiles are sometimes called single-segment runfiles, sequential runfiles, or R-
mode-like runfiles, but none of these names accurately describes all files created by
this method. This book calls them RUNIT files.

• Optimization can include relocating data and symbols in the runfile. Certain blocks of
data, called common blocks, are put by the loader into segments separate from those
used for other program data.

• An object file can be loaded into a specified segment or a relative segment.

• Data or a procedure can be loaded on a page boundary to reduce search time.

® Base area allocation can be controlled. The base area is that part of a procedure
segment used for reference in indirect addressing instructions. It is normally at the
beginning of each procedure segment, and the user need not be concerned with it
unless SEG returns the message SECTOR ZERO BASE AREA FULL.

Prepare Shared Programs: If you have a program to be used concurrently by several users, you
can share it with your System Administrator's authorization.

Change Stack Space and Location: If the stack runs out of space (PRIMOS error message
STACK_OVF$), or if too much space is allocated for it in a small program, you can change its
size, change its location, set minimum stack size, or specify an extension to the stack.

DOC3524-192 1-4

OVERVIEW OF SEG 1

Produce Load Maps: A load map is a list of the segments being used by a particular runfile,
with the address within each segment of the procedures and data sections that were loaded.
SEG allows different map options, including one that lists only unresolved references and two
that list only symbols. Users should learn to read load maps and to use the different map
options, both for debugging loads and individual programs, and for studying memory alloca­
tion and how it can be optimized. Load maps can also be used for correcting errors signalled by
PRIMOS error messages.

Make Templates: A template is a group of routines that you plan to use with several programs.
It serves the function of a private library. This procedure can include forced loading of all
routines in a binary file.

Execute Runfiles: Default runfiles may be executed with SEG.

Get Help: SEG has a HELP option that lists all commands and subcommands available.

Debug Runfiles: This can include:

• Invoke VPSD for debugging. VPSD is a symbolic debugger described in the Assem­
bly Language Programmer's Guide.

• Check for unresolved references (calls to subprograms or subroutines).

• Restart a load after an error, overlaying any work already done.

• Restart a program at a certain address with the PRIMOS command START after having
interrupted it with CONTROL-P (BREAK).

Change Runfiles: The following options are available:

• Load an object file (including library files) into a runfile.

• Duplicate the parameters of the previous load. The purpose is to avoid retyping.

• Modify runfiles. You can patch, save, restore, or copy a runfile, or change the starting
address of a runfile, or its stack size and location. You can also add or replace modules
in an existing runfile, or restore runfiles in order to modify them without execution.
You can delete symbols in the runfile.

• Create a new runfile starting from one that already exists.

• Name, save, or delete a runfile.

Check attributes of a runfile: The version, date last modified, and runtime parameters can be
checked. The runtime parameters are the starting address, stack location, keys, and contents of
the A, B, and X registers.

1-5 Second Edition

1 OVERVIEW OF SEG

PRIMOS ARCHITECTURE AND VIRTUAL MEMORY

This section describes system architecture and virtual memory as used by SEG. The SEG utility
is designed to take full advantage of certain features of PRIMOS available in V-mode and I-
mode.

V-Mode and Other Addressing Modes

Prime hardware allows several different addressing modes. They include:

32R, 64R R-mode Relative addressing mode, using 16-bit registers that can ad­
dress 128K bytes of memory. Some PRIMOS utilities are still
written in R-mode.

64V V-mode Virtual (segmented) addressing mode, using 32-bit registers,
and allowing 512 megabytes of virtual memory to be ad­
dressed. PRIMOS itself is V-mode.

321 I-mode Integer mode (also called instruction or immediate mode).
This has the same addressing range as V-mode, but is more
efficient for decimal instructions.

The 64V and 321 modes are more efficient that R-mode and are recommended for all user-
written code on the Prime 50 series. For details on these addressing modes, see the Assembly
Language Programmer's Guide.

SEG normally handles only 64V and 321 modes. For this reason, programs that use another
mode cannot call or be called by programs in these modes. If you attempt to use SEG to load a
FORTRAN or PMA program compiled or assembled in 32R mode, you get the message:

CAN'T LOAD IN 32R MODE

The program can usually be recompiled with the -64V option or reassembled with minor
changes in its code.

V- and I-mode programs consist of several separate frames or areas, named after the register
that addresses each. These are:

Procedure frame Executable code and stack segment headers.

Link frame Static data (also called linkage area because it contains linkage
information about the locations of external procedures and
static external storage). It also contains the information on the
executable code itself, in the form of an entry control block
ECB).

Stack frame Dynamic variables.

SEG is designed to take full advantage of V-mode and I-mode program structure. Chapter 2,
DEFAULT LOADS, shows how these frames of the program are placed in segments automati­
cally on a default load. However, you can use SEG to place them differently.

DOC3524-192 1-6

OVERVIEW OF SEG 1

Segmentation and Paging

PRIMOS provides virtual memory. For the SEG user, this means that a much larger amount of
memory is available for programs than the physical amount in the machine. To make use of the
virtual memory capability, the program is broken into virtual segments of 128K (131072) bytes
each. They are called virtual segments because they may be stored in a file as well as loaded
into physical memory segments. PRIMOS automatically moves into physical memory the parts
of the program that are needed at any one time. (Even if the program is smaller than one
segment, SEG loads it into at least two different segments unless you change this default
procedure with some of the commands discussed above in Other Functions SEG Can Perform.)

A segment is further divided into 64 pages of 2K (2048) bytes each, and it is these pages that are
moved into live memory as needed. The activity of moving pages into memory (and storing
them back on disk if they were changed while in live memory) is called paging. The pages are
usually first copied out of your disk files onto a special paging disk. A constant movement of
pages from the paging disk into live memory will slow execution time. There are ways in
which special functions of SEG can reduce the amount of paging. These ways are listed above
in Other Functions SEG Can Perform.

Relative and Absolute Segment Numbers

The user may either specify the virtual segment number for each part of the program, or may
leave the assignment to SEG. If the segment number is specified, it is called an absolute
segment number and the procedure is called absolute loading. If the assignment is left to SEG,
the segment number is called a relative segment number. In Chapters 5, 6, and 7, the discussion
for each command tells whether that command may be used with both absolute and relative
segments, and how to make the distinction. In a default load, of course, the user leaves all
assignments to SEG. In loads where every byte of memory is needed, or where shared
segments are desired, every module of a load may be given a specific absolute segment number.
Sometimes, however, the user may merely wish to specify, for example, that common blocks be
in separate segments from other data, but may not care what the segments are. In that case, the
user could specify separate relative segment numbers (such as 1 and 2), and SEG would use
separate segments, with numbers in the range of '4000 to '4777. An example is in Chapter 4.

Organization of Memory

Prime's virtual memory is divided into four areas, defined by tables associated with registers
called Descriptor Table Address Registers (DTARs). The segments defined within these
DTARs are as follows:

Maximum Range
Area

0

1

2

3

Type

Shared

Shared

Private

Private

of Segments*

'0 - '1777

'2000 - '3777

'4000 - '5777

'6000 - '7776

Usage

PRIMOS code and buffers

Shared libraries and programs

User space

Impure user data and stacks

The current range varies with each software revision. In Rev. 19.2, only segments
beginning with an even number are used.

1-7 Second Edition

1 OVERVIEW OF SEG

Areas 0 and 1 are unique within virtual memory. This means that every user accesses the same
segment when any PRIMOS command is executed or a shared library or compiler is used.

Areas 2 and 3 exist separately for every user. Note that Area 2 is variable in size, depending on
the version and configuration of the system. The default allows a maximum of '40 (decimal 32)
segments. Area 3 is defined by Prime. Anything in this space is used and defined by PRIMOS
for the user program.

Thus the memory available to a single user might be imagined as in Figure 1-2.

6000+

4000+

2000+

0+ -

- Private

- Private

- Shared

Shared

Memory Available to One User
Figure 1-2

On a default load, SEG uses only segments in the '4xxx range. In addition, PRIMOS uses some
in the '6xxx range.

Sharing

Most software furnished by Prime is shared. This means that if multiple users call it, only one
copy of the program is paged into a memory area common to all of these users, thus saving
considerably on paging time. User-written programs may also be shared by the System
Administrator at the supervisor terminal. These programs must be assigned to shared seg­
ments. Which segments are shared depends on the revision of PRIMOS being used. In general,
as described in the preceding subsection, segments numbered between '0000 and '3777 are
shared and those numbered '4000 and above are not. There is, therefore, one copy of the lower-
numbered segments, while every user has a copy of the higher-numbered segments, which is
switched in and out as a timeslice is allocated to each user.

DOC3524-192 1-8

OVERVIEW OF SEG l

A system with several users has a segment usage that may be imagined as something like
Figure 1-3.

User 1 User 2 User n

I J

Segments
3777

to 000

Same for All
Users

Shared Virtual Memory
Figure 1-3

SEG may be used to load parts of programs (either procedure or data) in the '2xxx range. This is
illustrated for shared programs and data in Chapter 4.

Restriction on User Segment Allocation

PRIMOS has a pool of segments available to all users concurrently. When a user needs another
segment, PRIMOS removes a segment from its pool and assigns it to the user, giving it the
segment number requested by the user. Until the user logs out or explicitly deletes the
segment, it can only be referenced by that user. PRIMOS has a limited number of segments in
the available segment pool. This number varies with the configuration of each system. When a
user program finishes executing, its segments remain assigned to that user until logout, and are
not available to other users. It is good practice to use the PRIMOS command DELSEG after
execution of a large program to release its segments. Otherwise that number of segments
remains assigned to the user until logout, precluding their use by anyone else. If not enough
segments are available in the common pool, the error message INSUFFICIENT SEGMENTS is
displayed.

1-9 Second Edition

1 OVERVIEW OF SEG

SOFTWARE FEATURES OF THE OPERATING SYSTEM

Two software features of PRIMOS should be mentioned in a discussion of what SEG can and
cannot do.

Pure and Impure Code

A piece of code that is not modifiable is called reentrant or pure. Such a program or subroutine
may call itself, or may call a program that calls the original caller. This is called recursion. The
significance of this feature is that several users may share the code of one program if it is pure.
In all cases, a return from a subroutine call will go back to the correct calling program. A
following call will not end up with the results of previous computations. To be pure, a routine
cannot have the return address of its caller modified while in memory. (This would be called
impure code.) The most common way to assure reentrancy is to separate procedure and data
into different segments and declare the procedure to be unmodifiable and reentrant, while
data segments use a separate stack for each subroutine call. Then with each call the calling
module gets a new copy of the local data variables.

All user binary code produced by the F77, BASIC, COBOL, Pascal, and PL1G compilers is
normally reentrant or pure. The only compiler that produces impure code is the FORTRAN IV
(FTN) compiler when used without the -DYNM or -64V command option. PMA also may
produce impure code. Thus, a few older operating system subroutines written in FTN or PMA
have impure code. Some of these are used by SEG and by the operating system. In default
loads, these cause no problem. Two separate system libraries with the alluring names of the
pure FORTRAN library (PFTNLB) and the impure FORTRAN library (IFTNLB) are main­
tained so that the proper kind of code can automatically be loaded where it is needed.

If you do not use the default load procedure of SEG, be aware that you are responsible for
assuring reentrancy of code if you want it. This is usually necessary only when creating
templates. To handle subroutines that have such mixed code, use the VLOAD subcommands IL
and PL to load them into the correct segments of your program. This is explained in Chapter 5.

Direct Entry Links

One class of external reference is not resolved by the loader. This is a direct entry link. Many
commonly used operating system subroutines such as EXIT and TNOUA are not actually
loaded with the program calling them. They are coded as part of the PRIMOS operating system
with a label that allows the program to find them at runtime. The subroutine identified by the
label is a direct entry point into PRIMOS. This resolution at runtime is referred to as dynamic
linking or snapping a link. Since the subroutine itself is not included in the runfile, the runfile
is smaller and the program starts faster. In addition, the subroutine is shared by all users on the
system. Finally, when a new version of the subroutine is installed, all programs that use it will
immediately start using the new version without having to be recompiled or reloaded. SEG
does not load direct entry links, but it recognizes them as such and lists them in a separate
category in its load map.

DOC3524-192 1-10

OVERVIEW OF SEG 1

WHAT IS NEXT

This chapter provided a theoretical background for users of SEG, with overviews of the
features of PRIMOS architecture and software that help understand the various options of SEG.
The following chapters of Part I are dedicated to practical examples of different cases. Chapter
2 shows how SEG works with virtual memory on a default load. Chapter 3 illustrates how load
maps show what is going on in virtual memory. Chapter 4 discusses how to do special loads
that alter SEG's interaction with PRIMOS features. Chapters 5 through 7 list all subcommands
of SEG.

1-11 Second Edition

2
DEFAULT LOADS

The term default load is used for the loading sequence that uses the fewest user commands and
all possible default segments and filenames that SEG can supply. This chapter first presents the
normal default load sequence available for software revisions 18 and higher, and then reviews
the older sequence that was the normal default load for revisions lower than 18. The intent of
the first sections is to provide a list of the mechanical steps necessary for a default load.

What goes on in memory during a default load is diagrammed in Figure 2-1 later in this
chapter, with segment allocation discussed in some detail.

DEFAULT LOADING AND EXECUTION

Most loads can be accomplished with the following procedure, which uses filename conven­
tions valid for PRIMOS software revisions 18 and higher. The procedure assumes an object or
binary file whose name ends with .BIN. Such files are produced by all Prime compilers and the
assembler from source files whose names use the filenaming conventions shown in Table 2-1.
Files with other name' formats may be renamed to take advantage of this filenaming conven­
tion. The steps of this load are:

1. Invoke SEG from PRIMOS level with the -LOAD option to enter the VLOAD
subprocessor.

2. Use the VLOAD subprocessor's LOAD command to load the binary file
(filename.BIN) and any separately compiled subroutines or called programs. The
filename entered need not be followed with .BIN, as SEG looks first for
filename.BIN, then for filename. Pathnames may be used.

2-1 Second Edition

2 DEFAULT LOADS

At this point the runfilename filename.SEG is automatically generated in the cur­
rent UFD. If a runfile of that name already exists, it is overwritten.

3. Use the LIBRARY subcommand of VLOAD to load language libraries and any special
libraries such as VSRTLI or VAPPLB. All languages except FORTRAN and PMA
require that a language library be loaded, as shown in Table 2-1.

The command LIBRARY acts like LOAD except that it seeks files in the system UFD
called LIB. Thus, the command LI PASLIB seeks a file with the pathname
LIB>PASLIB[.BIN].

4. Use the LIBRARY subcommand with no argument to load the system libraries
IFTNLB, PFTNLB, and SPLLIB.

5. Enter QUIT to save the runfile and exit from SEG to PRIMOS level. Or, use EXECUTE
to start execution of the runfile.

6. To execute the program subsequently, use the command SEG filename. SEG will
look first for a file named filename.SEG, then for filename.

Table 2-1
File Naming Conventions and Libraries

for Each Prime Language in Rev. 18 and Hi

Language

COBOL
CBL (COBOL 74)
FTN
¥77
Pascal
PL1G
PMA
VRPG

Source Name

pgm.COBOL
pgm.CBL
pgm.FTN
pgm.F77
pgm.PASCAL
pgm.PLlG
pgm.PMA
pgm.VRPG

Library
Needed

VCOBLB
CBLLIB

none
none

PASLIB
PL1GLB

none
VRPGLB

Object
Name

pgm.BIN
pgm.BIN
pgm.BIN
pgm.BIN
pgm.BIN
pgm.BIN
pgm.BIN
pgm.BIN

gher

Runfilename

pgm.SEG
pgm.SEG
pgm.SEG
pgm.SEG
pgm.SEG
pgm.SEG
pgm.SEG
pgm.SEG

If loading is successful, entering the command LI(BRARY) in Step 4 will produce the message
LOAD COMPLETE. If this message is not produced, enter the subcommand MAP 3 to identify
the unsatisfied subroutine, program, or common block references. If necessary, use INITIAL­
IZE to start again from Step 2, this time loading all files in the correct order.

Note

The PRIMOS filenames given by SEG may be up to 32 characters in length. However,
program-names used within the programs have a maximum of eight characters that
can be recognized by SEG.

DOC3524-192 2-2

DEFAULT LOADS 2

Load Sequence

It is impor tan t to load modules of a runfi le in correct sequence . A call ing modu le should
always be loaded before the modu le it calls. The normal load ing sequence is:

1. Main user p rog ram

2. User subprograms in the order in wh ich they are called

3. Compi ler l ibrary or l ibraries, if any (PL1GLB, VCOBLB ...)

4. Any special subrou t ine l ibraries, such as VAPPLB or VSRTLI

5. The system libraries IFTNLB, PFTNLB, and SPLLIB

Error Messages

If loading is not successful, the command QUIT will cause SEG to display the error message
WARNING: LOAD N O T COMPLETE. To rectify the omission, start over from Step 1. After Step
4, en ter MAP 3, as discussed in the p reced ing paragraph .

If an error occurs d u r i n g an opera t ion , SEG pr in ts an error message, fol lowed by the p rompt
character. Few errors m a d e d u r i n g a default load w o u l d cause a r e tu rn to PRIMOS level. Error
messages and sugges ted h a n d l i n g techniques are discussed in Chap te r 8.

Examples of Default Loading Sequences

The default load ing sequence leads the user directly to the VLO AD subprocessor of SEG, so that
the p r o m p t d isplayed is a lways the dollar s ign ($).

To load and run a Pascal b inary file n a m e d TREE.BIN, use the fol lowing sequence:

0 K , SEG -LOAD / * INVOKE LOAD SUBPROCESSOR OF SEG
[SEG r e v . x . x]
$ LOAD TREE / * LOAD MAIN BINARY FILE
$ LIBRARY PASLIB / * LOAD LANGUAGE LIBRARY
$ LIBRARY / * LOAD SYSTEM LIBRARIES
LOAD COMPLETE

$ EXECUTE / * EXECUTE FROM WITHIN VLOAD
OK, / • PRIMOS-LEVEL PROMPT - - PROGRAM HAS EXECUTED

/ * SUCCESSFULLY

To load and execute FORTRAN or PMA programs , no special l ibrary n e e d be loaded. The
fol lowing example shows h o w to load a p rogram whose source is n a m e d EXPO.PMA. The
binary file, EXPO.BIN, is not in the cur ren t UFD.

0 K , SEG -LOAD
[SEG r e v . x . x l

$ LO ANNE>OBJ>EXPO
$ LI
LOAD COMPLETE
$ EXEC
OK,

2-3 Second Edition

2 DEFAULT LOADS

The next example shows loading and execution of a FORTRAN program that uses one of the
application library subroutines listed in the Subroutines Reference Guide. It thus needs
VAPPLB to run.

OK, SEG -LOAD
[SEG rev. x.x]
$ LO MYPROG
$ LI VAPPLB
$ LI
LOAD COMPLETE
$ EXEC
OK,

To load and save but not execute a COBOL 74 binary file named MYPROG.BIN, which is stored
in a sub-UFD with a password, enter:

OK, SEG -LOAD
[SEG rev x . x]
$ LO '*>LADD SECRET>MYPROG*
$ LI CBLLIB
$ LI
LOAD COMPLETE
$ QUIT
OK,

To execute the program, enter:

SEG MYPROG

The following load of a PLIG program and user-written subroutine does not get a LOAD
COMPLETE message, so the user does a partial map:

OK, SEG -LOAD
[SEG rev x.x]
$ LO MYPROG
$ LO MYSUBROUTINE
$ LI
$ MAP 3
**P$LOUT 4002 000061 **P$TER 4002 000063 **P$PUTF 4002 000067
**P$EOUTF 4002 000071 **P$EINF 4002 000074 **P$GETF 4002 000077
**P$ST0P 4002 000131

Subroutines beginning with P$ usually are in the PLIG library, so the user restarts the load and
includes that library:

$ INIT
$ LO MYPROG
$ LO MYSUBROUTINE
$ LI PL1GLB
$ LI
LOAD COMPLETE
$ QUIT
OK.

DOC3524-192 2-4

DEFAULT LOADS 2

THE OLDER LOADING PROCEDURE

This section is useful only to those who must load binary files whose names do not end with
.BIN, such as B_filename or filename. To load these files, an extra step is necessary to name a
runfile. The extra step can be avoided by renaming the binary file with the command CNAME:

CNAME B_MYPROG MYPROG.BIN

and then using the newer procedure described above.

If the older loading procedure is still desired, use the following steps. Note that this sequence
starts by entering the SEG level of processing, so that the first prompt displayed is the pound
sign (#). Then the command VLOAD puts the user on the VLOAD subprocessor level, where
the prompt is the dollar sign ($).

1. Enter SEG with no options.

2. Enter VLOAD and the runfilename. It is recommended that this name end with
.SEG.

3. Follow Steps 3 through 5 described under DEFAULT LOADING AND EXECU­
TION at the start of this chapter.

4. For subsequent executions of the runfile, if the runfilename has the format
filename.SEG, enter only SEG filename. For any other format, enter the entire
filename.

As an example, the COBOL source program DISBURSE has been compiled to create the binary
file B—DISBURSE. It requires the sort library VSRTLI, and calls another program whose binary
filename is B_CALLED.

OK, SEG

[SEG rev x.x]
I VL DISBURSE.SEG
j LO B_DISBURSE
| LO B_CALLED
| LI VCOBLB
| LI VSRTLI
$ L I

LOAD COMPLETE
| EXEC
OK,

For subsequent executions, enter:

SEG DISBURSE

2-5 Second Edition

2 DEFAULT LOADS

SEGMENT ALLOCATION IN A DEFAULT LOAD

The mechanical steps for a default load are given in the first part of the chapter. The present
discussion describes what goes on in memory during a default load.

On a normal or default load, SEG loads programs into virtual segments and resolves most
references between modules. SEG itself resides in segment '4000. The first procedure or
instruction section is loaded into segment '4001, and any subsequent procedure sections into
the next available segments such as '4003, '4004, and so on. (No single procedure section can be
larger than one segment. If it is, the programmer must break the program into smaller modules
for separate compilation.) The static (initialized) data section is loaded into segment '4002. If it
is too large for one segment it is continued in available segments such as '4003, '4004, and so on.
Procedure and data are never loaded into the same segment on a default load. Then any
necessary libraries are loaded following the same principles.

The dynamic data areas are allocated with a stack. The stack is a dynamic work area that is
usually assigned as the next free location in the first procedure segment with '6000 (decimal
2048) free 16-bit locations. If no such segment exists, a new segment is assigned with the first
location in the stack set to 4; locations 0 through 3 are used by the hardware. The user may
change the location of the stack and may change its size. The stack is only allocated in
procedure segments. It may use more than '6000 locations.

The name stack is also used for the concatenation of all separate stacks for all modules in the
program. A stack frame is allocated for each module. The frame is described in Appendix G.
Stacks can be traced back with Prime's Source Level Debugger (DBG) or the VPSD debugger.
The load map shows the size needed for each data stack, but not its location, as location is
determined at run time.

After all loading, the user's virtual memory looks something like Figure 2-1.

DOC3524-192 2-6

DEFAULT LOADS 2

6000+

5000-5777

4400-4777

4036-4377

4035

4003-4034

4002

4001

4000

2200-3777

2170-2377

2040-2167

2000-2137

0000-1777

PRIMOS Per-user
Runtime

Support & Stack

Reserved

Reserved

Data and
Programs as
Necessary

Default Limit 4037

Symbol Table

Data and
Procedure as

Necessary

Data

Procedure
(and Stack if

There is Room)

SEG

Reserved

Public Shared

Shared System
Libraries &
Programs

Public Shared

Operating System

Default Allocation of Segments at Rev. 19.2
Figure 2-1

The command LI causes SEG to load three system libraries: IFTNLB, PFTNLB, and SPLLIB.

Meanwhile SEG is building a symbol table. It contains the names of all modules, all direct
entry points, and all data names identified as external references. This table is placed in

2-7 Second Edition

2 DEFAULT LOADS

segment '4035. During the load, SEG is also attempting to resolve all external references. This
means that any data names or procedure calls that the compiler could not find within the same
module are now sought in the symbol table. Thus, if a PLIG program calls the subroutine
TNOUA or the subroutine P$AINT in the PLIG library, the compiler has recognized only that
these were external calls, but now SEG can put the address of the external subroutine into the
call. When all names in the symbol table have been found (except for direct entry points), SEG
displays the message LOAD COMPLETE.

ADVANTAGES OF THE DEFAULT LOAD

Chapter 4 presents some ways in which loads can be changed to save space and run time. After
reading that chapter, you may wonder why the default load should be used at all. There are
several reasons. A runfile created by a default load is much easier to debug than most of those
discussed in Chapter 4. Prime's Source Level Debugger (DBG) can only handle files created
with the segment allocation described in this chapter. Shared segments in particular can only
be examined with VPSD. If you want to do more sophisticated loads, first use the default load
until your program seems to run without bugs, then reload to produce an optimized runfile.

The default load has several other advantages. It always finds enough room, as long as your
procedure section is no larger than one segment. In the default load, SEG uses some techniques
to optimize size and placement of the runfile, and may do it better than the programmer
working on a special load. On a default load, SEG can also detect stack overflow, while it may
not be able to do so in some special loads.

DOC3524-192 2-8

3
SEG LOAD MAPS

This chapter first describes the sections of a load map generated by SEG's MAP command. A
load map is a listing of selected memory addresses. It shows such information as what calls are
unresolved and where space can be saved. During a complicated loading session, the map
should be monitored constantly. For example, the MAP 1 option can be used to check the
allocated segments and the addresses used within the segment. A MAP 3 is recommended if
the message LOAD COMPLETE is not returned after the command LIBRARY is entered.

The second part of the chapter presents the different options of the MAP command.

The last part of the chapter gives examples of uses of load maps to answer the following
questions:

• What did I forget to load?

• Where did my program die?

• Why are there no more available segments?

• Why did the stack overflow?

• How can I save space?

Some of these examples assume familiarity with information in Chapters 4 through 7.

3-1 Second Edition

3 SEG LOAD MAPS

READING THE LOAD MAP

Figure 3-1 is an example of a normal map. It is used in most of the discussion in this first
section. It is a FORTRAN 77 program, listed as Program 1 in Appendix D. Figure 3-2 shows the
memory segments listed in the map. Each numbered section is discussed in the pages that
follow.

1 .

2.

4.

7.

OK, SEG -LOAD
[SEG rev x.x]
$ LO TMDT
$ LI
LOAD COMPLETE
$ MAP

•START 4002 000004 *STACK 7777 000000 *SYM 000032

SEG. #
4001
4002

ROUTINE
MAIN
F$ERX

TYPE
PROC
DATA

LOW
001000
000000

HIGH
001363
000341

ECB
4002 000004
4002 000314

PROCEDURE
4001 001121
4001 001276

ST.

TOP
001363
000341

SIZE
000056
000020

LINK FR,
000054
000026

4002
4002

177400
177714

DIRECT ENTRY LINKS
EXIT 4001 001324
TNOUA 4001 001340
F$CB77 4001 001354

TIMDAT 4001 001330
F$IFW 4001 001344
F$STOP 4001 001360

COMMON
AABB
AA

BLOCKS
4002
4002

000054
000260

000201
000034

BB

TNOU 4001 001334
F$XFR 4001 001350

4002 000256 000001

OTHER SYMBOLS
F184DONE 4001 001276

$ Q
OK.

A Map Obtained from a Successful Default Load
(Source is Program 1 in Appendix D.)

Figure 3-1

DOC3524-192 3-2

SEG LOAD MAPS 3

4002

FSERX ECB & Link Fr
AA
BB
AABB
MAIN ECB
Beginning of
Main Link Frame

177714*400 314
260
256
54

4

177400+400 = 000*

4001

FSSTOP
FSCB77
FSXFR
F$IFW
TNOUA
TNOU
TIM DAT
EXIT
FSERX Proc
MAIN Proc

177777

1360
1354
1350
1344
1340
1334
1330
1324
1276
1121

Segments Shown on the Map in Figure 3-1
*(The '400 offset is explained on page 3-7.)

Figure 3-2

Note

All values in load maps are given in octal notation. All addresses are 16-bit addresses.

3-3 Second Edition

3 SEG LOAD MAPS

Section 1 — Program Start

The program start area shows where the program has been loaded, the stack start location, and
the current number of symbols in the symbol table.

*START The segment number and location for the start of execution. At the
beginning of a load, the start address is initialized to '7777 000000. SEG
fills in ""START with the address of the ECB for the first segmented
procedure encountered (usually the main program). In Figure 3-1, SEG
placed the ECB of the procedure at address 4 of segment '4002.

The only time that multiple occurrences of a segment number are valid is
for split segments, which are discussed in Chapter 4. Any other multiple
occurrences indicate incorrect mixing of default and user-specified load
addresses or incorrect placement of common blocks.

Note

If RUNIT has been loaded with the SPLIT command as shown
in Chapter 4, the address of RUNIT is used as the start address,
rather than the address for START on the load map.

*STACK Segment number and location of the start of the stack. It is initialized to
'7777 000000 at the start of a load. This value is not changed until the file
is saved by a QUIT, RETURN, SAVE, or EXECUTE command within
VLOAD. The default stack is in the first procedure segment above '4000
with 2048 free locations at the top of memory. In Figure 3-1, the file has
not been saved, so the address shown is the one initialized by SEG.

Caution

After the file has been saved, the stack values will be meaning­
less if RUNIT has been loaded with the SPLIT command.

SEG does not keep track of such split segments and may assign
the stack to the top of the procedure portion of a split segment.
This causes problems if there is not enough space between the
end of the procedure portion and the start of the data portion.

hSYM The number of symbols in the symbol table. This number includes
segment numbers and ECB's, and may include empty symbols that do not
appear on the load map. It allows the user to check whether the maxi­
mum number of symbols has been or is about to be exceeded. In Rev. 19.1,
the maximum number of symbols is '16161. In Figure 3-1, the number of
symbols is '32, or decimal 26.

DOC3524-192 3-4

SEG LOAD MAPS 3

Section 2 — Segment Assignments

Each segment is labeled as procedure (PROC) or data (DATA). The list is sorted in order of
segment number. Figure 3-1 shows a simple load requiring only two segments, '4001 and
'4002.

LOW Lowest loaded location in the segment. (Not necessarily the lowest
assigned location.) Initialized to '177777 (-1) at segment creation; if the
segment is used only for uninitialized common areas, LOW is not
changed.

HIGH Highest loaded location in the segment. (Not necessarily the highest
assigned location.) Initialized to '000000 at segment creation; if the
segment is used only for uninitialized common areas, HIGH is not
changed.

TOP Highest assigned location in the segment. TOP should not be lower than
HIGH. If it is, the user may have specified incorrect load addresses on a
special load. TOP is initialized to '177777 (-1) at segment creation. When
space is reserved for large common blocks, the loader will only set TOP to
a maximum of '177776 even though the entire segment to '177777 is
reserved. The reason for this is that a LOW, HIGH, and TOP of '177777,
'000000, and '177777 indicate an empty segment.

Even in the case of a split load, TOP should not be higher than the
location of the split.

In Figure 3-1, the procedure part of the program covers '364 16-bit locations, and the data part
requires '342 16-bit locations.

Section 3 — Base Areas

This section is not shown in Figure 3-1. See Figure 3-3 below. A base area is an area within a
procedure segment that is used as a reference for indirect addressing. It may be established
directly within PMA by the SETB pseudo-op. Programmers in high-level languages need not
be concerned with base areas unless SEG returns the error message SECTOR 0 BASE AREA
FULL. In that case, more base areas may be created with the SETBASE or AUTOMATIC
subcommands of LOAD. Base areas are shown on a load map in the following form.

>BASE AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE

AAAAAA Segment number.

BBBBBB Lowest location for base area.

CCCCCC Next available location starting up from lowest location.

DDDDDD Next available location starting down from highest.

EEEEEE Highest location for base area.

The lowest default location for the sector zero base area is '100. If CCCCCC is greater than
DDDDDD, the base area is full.

3-5 Second Edition

3 SEG LOAD MAPS

There may be a sector zero base area in each procedure segment; there must be none in data
segments.

Figure 3-3 uses a load map in which base areas are shown. This is a map of a COBOL program.
Since COBOL uses many 16-bit indirect addresses, the original sector-zero base area has been
allocated starting at address '100 in segment '4001. The lower '14 locations have been used, but
no space has been allocated at the top of the base area (address '777 in segment '4001).

1.

2.

3.

4.

5.

6.

7.

OK, SEG
[SEG rev x.x]
RESTORE OLDCASH
MAP

•START

SEG. #
4001
4002

•BASE

ROUTINE
DISBUR
F$ERX

4002 000041 •STACK 4001 006654 +SYM 000034

TYPE LOW HIGH
PROCjfjf 000100 006654
DATA 000000 001277

004001 000100

ECB
4002 000041
4002 001252

DIRECT ENTRY LINKS
C$0S 4001 006556
C$WS 4001 006572
EXIT 4001 006634
I$AA12 4001 006650

COMMON BLOCKS

TOP
006653
001277

000114 000777 000777

PROCEDURE
4001 001000
4001 006606

C$CS 4001
C$IN 4001
TNOU 4001

OTHER SYMBOLS
CR18_4 4001 006554 F184DONE

ST. SIZE
000070
000020

006562
006576
006640

LINK FR.
001251
000026

C$RS
C$ADAT
TNOUA

4001 006606

4002
4002

4001
4001
4001

177422
000652

006566
006602
006644

A Map Showing Base Area Allocation
Figure 3-3

There may be a sector zero base area in each procedure segment. There must be none in data
segments (except split segments). Base areas other than those in sector zero are generated by
PMA modules. The appearance of such base areas in a default load is probably caused by the
inclusion of an improperly coded PMA routine.

DOC3524-192 3-6

SEG L O A D MAPS 3

Section 4 — Symbols

A main program or subroutine compiled in 64V mode is called a procedure. It is composed of:

ECB — entry control block.

Procedure frame — the executable code.

•

• Stack frame — dynamically allocated local storage that is assigned when the routine is
called, and released upon return from the routine.

• Link frame — static data, constants, and transfer vectors.

The ECB is usually part of the link frame. The procedure frame is located in a segment reserved
for procedure frames and stack frames. Link frames and common blocks will normally be
located in segments reserved for data. Each is displayed in the map as follows:

ROUTINE This section of the map describes all the external procedures in the
runfile. Often it will include subroutines that the user was not aware of
calling, but that are called implicitly by the program.

ECB The first pair of numbers in this section of the map give the segment and
address for the ECB. (If named, the ECB has the name assigned within the
program, not the PRIMOS filename. A PRIMOS file may contain several
ECBs.)

PROCEDURE The segment and address for the procedure.

ST. SIZE The size of the stack frame (working area) created whenever the routine is
called. Its segment and location therein are assigned at execution time.

LINK FR. The first column is the size of the link frame in 16-bit locations. The last
two columns are the link frame segment and offset. Note that the offset is
'400 locations lower than the actual position for compatibility with the
information printed by the PRIMOS command PM. This is because, at
least with FTN, F77, and PL1G, the first 16 bits in the link frame that can
be referenced efficiently are at offset '400 above the address in the link
base register (LB% + '400).

The segment number is usually that for the ECB.

Procedures with no external names (such as internal Pascal procedures) are identified by
in the name field.

The link frame address is useful in tracing abnormal program halts. After such a halt, the
PRIMOS command PM will usually be able to output a link base register value. This value
shows which routine was active at the time of failure. Some conditions such as stack overflow,
however, can render such information useless.

In Figure 3-1 above, the symbol section of the load map shows two routines, the FORTRAN
program MAIN, and a subroutine called by the ¥77 compiler, identified by the initial charac­
ters F$. (This one is F$ERX, which sets the forced loading of library files.) Both routines have
their link frames in segment '4002, which is always the segment used first for data and linkage
on a default load. Both have their procedure frames in segment '4001. MAIN is loaded at
address '1121 of segment '4001, and F$ERX is loaded right after it at address '1276. Since there is
no recursion, the size of the stack required will be at most only '56 plus '20, or decimal 62. The
link frame for MAIN starts at address 0 of segment '4002, and it has '54 16-bit locations

3-7 Second Edition

3 SEG LOAD MAPS

allocated for it. The ECB for MAIN is in this link frame, and it starts at an offset of 4 in the link
frame. Because the link frame starts at offset 0, the ECB starts at location 4 as shown in the map.

The link frame for F$ERX starts at address '314, and it has '26 locations allocated. The ECB for
F$ERX also starts at address '314, so it resides inside the link frame at an offset of 0. The link
frames have been allocated starting from the high addresses of segment '4002, and there is
plenty of space left between the highest address of the ECBs and the lowest address of the link
frames.

Section 5 — Direct Entry Links

As explained in Chapter 1, PRIMOS supports direct entry calls to the operating system for
certain routines. These are created as faulted pointers (unsnapped links) in the SEG runfile.
Where references are satisfied by these faulted pointers, they will appear in the DIRECT
ENTRY LINKS section of the map.

In Figure 3-1, eight direct entry links are listed. Two of them, EXIT and TIMDAT, were called
by the program TMDT.F77. The others were called implicitly by routines within MAIN. They
have addresses in segment '4001, the procedure segment. These addresses contain only enough
information to tell the operating system which subroutine is being referenced. The subroutine
itself resides in the operating system.

Section 6 — Common Blocks

This section lists each common block, its segment number, starting address in the segment, and
size, when known. The program mapped in Figure 3-1 shows three common blocks, named in
the FORTRAN program as AA, BB, and AABB. All are in the first data segment, '4002, just after
the link frame for program MAIN.

Section 7 — Unsatisfied References and Other Symbols

For each symbol, this section lists the symbol and its address (segment and offset number).
Unsatisfied references are preceded by two asterisks (**). The numbers for unsatisfied refer­
ences (segment and offset address) locate the last request for the routine that was processed by
the loader.

In Figure 3-1, this section shows no unsatisfied references. The symbol F184DONE is the Rev.
18 stamp for the F77 compiler.

DOC3524-192 3-8

SEG LOAD MAPS 3

THE MAP OPTIONS

The MAP command of SEG and the MAP subcommand of LOAD print a load map of a runfile,
either at the terminal or to a file. For details of syntax, see the discussions of these two
commands in Chapters 5 and 6. Both allow the following options.

Map Options Load Map Information

0 Full map (default).

1 Segment use map only (map sections 1 and 2).

2 Segment use map and base areas (map sections 1, 2 and 3).

3 Undefined symbols, if any, sorted by ascending address (map section
7).

4 Full map (identical to 0).

5 Reserved.

6 Undefined symbols, if any, sorted alphabetically (map section 7).

7 Full map, sorted alphabetically.

10 Symbols sorted by ascending address.

11 Symbols sorted alphabetically.

USING LOAD MAPS

The following subsections illustrate some useful readings of load maps. The first two examples
illustrate default loads. The others require some familiarity with the concepts in Chapter 4.

Checking for Unsatisfied References (Load Not Complete)

In this load, the user proceeds until the command LI fails to evoke the response LOAD
COMPLETE. Then a simple MAP 3 reveals the problem.

OK, SEG -LOAD
[SEG rev x.x]
$ LO CALLER
$ LI CBLLIB
$ LI
$ MAP 3

**CALLED 4002 000030

The missing routine is the user-written subprogram CALLED. Now the user clears memory
with INITIALIZE and starts over, this time including that routine.

3-9 Second Edition

3 SEG LOAD MAPS

$ INIT
$ LO
$ LO
$ LI
$ LI
LOAD
$ Q
OK,

CALLER
CALLED
CBLLIB

COMPLETE

Locating Runtime Errors

Sometimes a r un t ime PRIMOS error message may be unders tood by looking at t he load map.
The fol lowing is an example. It uses Programs 4 and 5 in Append ix D. The program
CALLER.F77 calls TMDT.WRONG, wh ich calls the PRIMOS subrou t ine TIMDAT.

OK, SEG -LOAD
[SEG r e v x . x]
$ LO CALLER
$ LO B_TMDT.WRONG
$ LI
LOAD COMPLETE
$ MAP
•START 4002 000004 *STACK 7777 000000 *SYM 000030

SEG. #
4001
4002

TYPE
PROC
DATA

LOW
001000
000000

HIGH
001475
000141

TOP
001475
000141

ROUTINE

TMBTWI
F$ERX

ECB
4002 000004
4002 000050
4002 000114

PROCEDURE
4001 001041
4001 001255
4001 001410

ST. SIZE
000102
000112
000020

LINK FR,
000044
000050
000026

4002 177400
4002 177444
4002 177514

DIRECT ENTRY LINKS
EXIT 4001 001436
TNOUA 4001 001452
F$CB77 4001 001466

TIMDAT 4001
F$IFW 4001
F$STOP 4001

001442
001456
001472

TNOU
F$XFR

4001
4001

001446
001462

COMMON BLOCKS

OTHER SYMBOLS
F184DONE 4001 001407

$ EXEC
FI

Error: condition "POINTER_FAULT$" raised at 6(0)/62650
Entry to inner ring was from call at 4001(3}/l257,
ER!

DOC3524-192 3-10

SEG LOAD MAPS 3

The PRIMOS error message indicates a problem at address '1257 in segment '4001. Examination
of the map shows that this address is the third 16-bit address of TMDTWR. (TMDTWR is the
ECB name for the program stored in the PRIMOS file TMDT.WRONG.) If TMDT.WRONG is
then compiled with the -EXPL option, the user can look at the second and third locations
shown on the expanded listing. Remember that addresses in the expanded listing are relative
addresses assigned before the program is given an address in the runfile. In the expanded
listing below, the second and third addresses are 136 and 137.

Source File: <T2>MINE>DOC3524>SAMPLE.PGMS>TMDT.WRONG
Compiled on: 830105 at: 11:27 by: FORTRAN-77 Rev x.x
Options: OPTIMIZE-2 XREF EXPLIST OFFSET NOBIG INTL LOGL DYNM 64V UPCASE
ERRTTY

1
2
3
4
5
6
7
8
9
10

PROGRAM TMDTWR
INTEGER*2 STRING(28)
INTEGER*2 NUM, DATE(3)
INTEGER*2 TIME, TIME1,
EQUIVALENCE (STRING(1),
EQUIVALENCE (STRING(4),
EQUIVALENCE (STRING(5),
EQUIVALENCE (STRING(6),
EQUIVALENCE (STRING(13)
NUM = 28

TIME2, NAME(16)
DATE)
TIME)
TIME1)
TIME2)
, NAME)

000135 02.000434L LDA LB%+434

000141: 000700.000054S AP

12 WRITE (1, 100)

SB%+54.SL

000143: 061432.000440L
000145: 000100.000023
000147: 001100.000436L
000151: 000300.000024

PCL
AP
AP
AP

LB%+440,*
PB%+23,S
LB%+436,S
PB%+24,SL

13 WRITE (1,300) DATE

000153: 061432.000440L PCL LBU440,*

The load map shows a problem at the third location in TMDTWR. In the expanded listing, the
second and locations are 136 and 137 and surround the PMA code for the subroutine call to
TIMDAT (called a PCL or procedure call). The description of TIMDAT is in the Subroutines

3-11 Second Edition

3 SEG LOAD MAPS

Reference Guide, and shows that TIMDAT expects two arguments, not one. If you change the

call to:

CALL TIMDAT (STRING, 28)

and recompile and reload, the program will execute correctly.

Finding Why There are No More Available Segments

This load uses a Pascal p rogram, TWO_CUBE.PASCAL, w i t h a large external array n a m e d MIN
(3674160 characters). The user does a default load and t h e n tries to r u n the p rogram wi th
Prime's Source Level Debugger (DBG).

0 K F PASCAL TW0_CUBE -DEBUG
0000 ERRORS [PASCAL Rev. x . x]
0 K» SEG -LOAD
[SEG r e v x . x]

$ LO TW0_CUBE
* LI PASLIB
$ LI
LOAD COMPLETE
$ QUIT
0 K » DBG TWO_CUBE
Fatal error: No more segments available for permanent storage.

(alloc_ps)
OK.

The user does a MAP 1 to study segment allocation:

OK, SEG
[SEG rev x.x]

RESTORE TW0_CUBE
MAP 1
•START i

SEG. #
4001
4002
4003
4004
4005
4006
4007
4010
4011
4012
4013
4014
4015
4016

4002 000004

TYPE

•STACK

LOW
PROC 001000
DATA 000000
DATA 1;
DATA 1',
DATA 1:
DATA 1:
DATA 1;
DATA 1i
DATA 1"
DATA 1;
DATA 1"
DATA 1;
DATA 1'
DATA 1;

Hill
mil
nm
mn
mn
mn
mn
mn
mn
mn
mn
mn

7777

HIGH
014475
150633
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

000000 •SYM

TOP

000146

0144
506

DOC3524-192 3-12

SEG LOAD MAPS 3

4017
4020
4021
4022
4023
4024
4025
4026
4027
4030
4031
4032
4033
4034
4035
4036
4037

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
177777
004027

There are two reasons for no t us ing this default load. The Pascal r u n t i m e system uses s tandard
heap storage s tar t ing at s egmen t '4027 a n d go ing d o w n to '4010. In addi t ion , Pr ime 's Source
Level Debugger needs some segments be tween '4001 and '4037 in o rder to operate proper ly .
Since a default load occupies all of these segments , DBG gives an error message u p o n
init ial ization.

N o w the user repeats the load, ass igning MIN to '4030.

SEG -LOAD
[SEG r e v x . x]
$ SYMBOL MIN 4030 0 /*SEE CHAPTER 6 FOR SYMBOL
* LO TW0_CUBE
$ LI PASLIB
* LI
LOAD COMPLETE
$ MAP 1
•START 4002 000004 *STACK 7777 000000 *SYM 000112

SEG. # TYPE LOW HIGH TOP
4001 PROC 001000 014475 014474
4002 DATA 000000 150633 150633

* EXEC

END OF RUN
OK,

The segments allocated to MIN are not shown , since MIN is no t ini t ial ized.

3-13 Second Edition

3 SEG LOAD MAPS

Note

This load will cause the message ILLEGAL_SEGNO$ if your system assigns only the
default number of segments ('40 or decimal 32) to each user. Check with your System
Administrator.

Looking at the Stack

The stack is allocated at runtime, so a load map is not always enough by itself to explain why
the stack has overflowed or how much space is needed for a stack, particularly with multiple or
recursive subroutine calls. The following discussion shows what can be determined through
the load map. The program is Program 2 (MINDLESS.¥77) in Appendix D. Its default space
allocation is visualized in Figure 3-4. When run, it gives the error message STACK_OVF$.

OK, SEG -LOAD
[SEG rev x .x]
$ LO MINDLESS
$ LI
LOAD COMPLETE
$ MAP 1

•START 4002 000004 *STACK 7777 000000 *SYM 000030

SEG. ft
4001
4002

TYPE
PROC
DATA

LOW
001000
000000

HIGH
001163
000131

TOP
001163
000131

$ EXEC

VALUE
VALUE
VALUE

VALUE:
VALUE:
VALUE:

30
31
32

Error: condition "STACK_0VF$" raised at 4001(3)/l072

DOC3524-192 3-14

SEG LOAD MAPS 3

MAP 1 above s h o w e d that space allocation looked like this:

4002

4001

Stack

Proc

Data

1163

1000

131

Space Allocation for Program MINDLESS
Figure 3-4

STACK_OVF$ was raised at location '1072 in segment 4001 (r ing 3 or user area). On the map,
the h ighes t code location was '1163, so n o w reset the stack to ex tend farther.

OK, SEG
[SEG r e v x . x]

RESTORE MINDLESS
MODIFY /*THE FOLLOWING SK COMMAND IS DISCUSSED UNDER MODIFY
/*IN CHAPTER 5. IT STARTS THE STACK AT SEGMENT '4001,
/*0FFSET '1163, AND EXTENDS IT INTO SEGMENT '4002.
$ SK 4001 1163 4002
$ RETURN

MAP 1
•START 4002

/•NOW YOU WILL SEE THAT THE STACK IS INITIALIZED,
/• BUT NO OTHER NEW INFO

000004 *STACK 4001 00 1163 +SYM 000030

SEG. # TYPE LOW HIGH TOP
4001 PROC## 001000 001163 001163
4002 DATA 000000 000131 000131

I Q
OK, SEG MINDLESS

VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE

195
196
197
198
199

OK

3-15 Second Edition

3 SEG LOAD MAPS

The use of VPSD together wi th the second load map will show that space allocation n o w looks
like Figure 3-5.

4007

4006

4005

4004

4003

4002

4001

Stack

loc_4

Stack

l o c _ 4

Stack

loc 4

Stack

l oc_4

Stack

l oc_4

Stack

loc_4

Stack

Proc
1163

1000

Space Allocation for Program MINDLESS after Stack Extension
Figure 3-5

Looking for Wasted Space

This example uses Program 1 in Append ix D. The user first does a default load, t h e n looks at
the map , and sees that two segments are used for a program whose ent i re data p lus p rocedure
size is '724 16-bit locations. This space allocation is represen ted in Figure 3-6a. The user t hen
redoes the load us ing the VLOAD subcommand MIX to do the mixed load described in Chapter
4. The n e w map shows that only one segment is used for the ent i re p rogram. The n e w space
allocation is s h o w n in Figure 3-6b.

OK, SEG -LOAD
[SEG r e v x . x]
$ LO TMDT

DOC3524-192 3-16

SEG LOAD MAPS 3

$ LI
LOAD COMPLETE
$ MAP 1

SEG. #
4001
1002

TYPE
PROC
DATA

LOW
o a i o o o
D00QQ0

HIGH

0-00

TOP
001363
000341

$ /*TOTAL '363 AND '341 = '724 WORDS NEEDED, BUT TWO SEGMENTS
$ /+ALLOCATED -- SEE FIGURE 3-6a
$ INITIALIZE /*REINITIALIZE SEG
$ MIX /+COMPRESS EVERYTHING INTO ONE SEGMENT
$ LO TMDT
$ LI
LOAD COMPLETE
$ MAP 1

•START 4001 001302 *STACK 7777 000000 *SYM 000031

SEG. * TYPE LOW HIGH TOP
4001 P1RGC 3100 D ';

$ /*'724 WORDS USED, BUT ALL IN ONE SEGMENT NOW -- FIGURE 3-6b

3-17 Second Edition

3 SEG LOAD MAPS

4002

4001

Empty

Data

Empty

Proc

341

1363

1000

Allocation of a Small Program on the Default Load
Figure 3-6a

4001

Empty

Data

Proc

1725

1363

1000

Allocation of a Small Program with MIX (Compression)
Figure 3-6b

Refining Storage Allocation

Usually it is necessary to try a load more than once to get the correct, or the best, storage
allocation. In the following example, a COBOL 74 program is loaded as a RUNIT file with all
procedure and data in segment '4000, as explained in Chapter 4. The program is Program 3 in
Appendix D. When the new file, LADD4000, is run the first time, it aborts with the error
message POINTER_FAULT$.

OK, SEG -LOAD
[SEG rev x.x]
$ SPLIT
$ MIX

3000 4000 150000 4001

$ S/LO LADD 0 4000 4000
$ D/LI
$ D/LI

CBLLIB

LOAD COMPLETE
$ MAP
•START

SEG. #
4000
4000
4001

DOC3524-192

0266 000000 *STACK

TYPE LOW
PROC## 000100
DATAH 177777
PROC 000100

4000

HIGH
002775
000000
047071

3-18

150000 *S

TOP
002775
002777
047070

000164

SEG LOAD MAPS 3

• BASE
• BASE

004000
004001

000100
000100

000126
000315

000777
000777

000777
000777

ROUTINE
STACK.
MAIN
C$OS
C$ER

ECB
.OV 4000 001212

4001 001004
4000 002544
4000 002632

PROCEDURE
4000 001152
4000 001241
4000 001264
4001 006334

ST. SIZE LINK FR.
000030 000024 4000 000612
000054 003721 4001 000400
000256 000064 4000 002144
000232 000034 4000 002232

P$ACKVB 4001 046620 4001 046506 000036 000032 4001 046220
F$ERX 4001 046700 4001 046652 000020 000026 4001 046300

DIRECT ENTRY LINKS
P$ASB 4001 046154
P$LLR3 4001 046170
P$LRL4 4001 046204

P$ALR1 4001
P$LRR1 4001
P$ARR1 4001

046160 P$LLR1 4001 046164
046174 P$ARL2 4001 046200
046210 ATCH$$ 4001 046726

O$AD07 4001 047056 TONL 4001 047062 T10U 4001 047066

COMMON BLOCKS
STACK$
POOLBG
ISMPAR
POOLPR
SL$COM
ISMARR
P$ONCH

4000
4001
4001
4001
4001
4001
4001

OTHER SYMBOLS
RUN IT 4000
F192QFP4 4000

$ RE
SHARE
FILE ID:
Creating
Q
OK, R LA]

LADD
LADD400C

DD4000

001006
026656
042712
043122
044056
044066
046500

001000
002776

I

014000
000011
000100
000005
000041
000001

RESUME 1
ERRCOM '

FIL$CM
ISMTMP
ISMAR1
STM
TR$COM
CODE
P$ONSRC

4000 001053
4001 044132

/•MULTICHARACTER

4001
4001
4001
4001
4001
4001
4001

CR18.

004722
042656
042724
043222
044064
044130
046502

_9 4000
P$ENTP 4001

ID IN REV. 19.2

001412
000033
000175
000634
000001
000002
000003

002630
046142

Error: condition "POINTER_FAULT$" raised at 4000(3)/l104.

Inspection of the map shows two things wrong. The COBOL 74 library (CBLLIB), like the PLIG
library, loads some modules as common blocks. The map shows that most of these are still in
segment '4001 and need to be relocated specifically in segment '4000. In addition, the SPLIT
command allowed only '3000 locations for the procedure section. (The command SIZE
LIB>CBLLIB.BIN reveals that CBLLIB is over '240000 16-bit locations in size.) The following
retrial corrects these errors.

3-19 Second Edition

3 SEG LOAD MAPS

/•NOTE WELL FOR COBOL 74

OK, SEG -LOAD
[SEG rev x.x]
$ COMMON ABS 4000
$ SPLIT 67777 4000 150000 4001
$ MIX
$ S/LO LADD 0 4000 4000
$ D/LI CBLLIB
$ D/LI
LOAD COMPLETE
$ MAP
•START 0266 004000 •STACK 4000 150000 •SYM 000162

SEG. jj
4000
4000

TYPE
PROC##
DATA##

LOW
000100
177777

HIGH
051067
000000

TOP
051066
067776

•BASE 004000 000100 000343 000777 000777

ROUTINE ECB
STACK_OV 40 0 0
MAIN 4000
C$OS 4000
C$ER 4000

001212
001270
006466
010610

PROCEDURE
4000
4000
4000
4000

001152
001241
005206
010166

ST.
000030
000054
000256
000232

SIZE LINK FR.
000024
003721
000064
000034

4000
4000
4000
4000

000612
000664
006066
010210

P$ACKVB 4000 050616 4000 050504 000036 000032 4000 050216
F$ERX 4000 050676 4000 050650 000020 000026 4000 050276

DIRECT ENTRY LINKS
P$ASB 4000 050152
P$LLR3 4000 050166
P$LRL4 4000 050202
O$AD07 4000 051054

P$ALR1 4000 050156
P$LRR1 4000 050172
P$ARR1 4000 050206
TONL 4000 051060

P$LLR1 4000 050162
P$ARL2 4000 050176
ATCH$$ 4000 050724
T10U 4000 051064

COMMON BLOCKS
STACKS
POOLBG
ISMPAR
POOLPR
SL$COM
ISMARR
P$ONCH

4000
4000
4000
4000
4000
4000
4000

001006
030654
044710
045120
046054
046064
050476

014000
000011
000100
000005
000041
000001

FIL$CM
ISMTMP
ISMAR1
STM
TR$COM
CODE
P$ONSRC

4000
4000
4000
4000
4000
4000
4000

006552
044654
044722
045220
046062
046126
050500

001412
000033
000175
000634
000001
000002
000003

OTHER SYMBOLS
RUNIT 4000 001000
ERRCOM 4000 046130

RESUME 4000 001053 CR18_9 4000 010164
P$ENTP 4000 050140 F192QFP4 4000 050212

$ RE
SHARE
FILE ID: LADD
Creating LADD4000

DOC3524-192 3-20

SEG LOAD MAPS 3

I Q
OK, R LADD400 0

SO FAR SO GOOD.
OK.

3-21 Second Edition

4
ADVANCED SEG

TECHNIQUES

When an application demands greater control over the placement of modules, procedures, data
areas, and stacks, SEG has groups of commands specifically designed for this purpose. The
commands are listed in Chapters 5 through 7. This chapter shows the use of these commands in
a series of techniques, and illustrates the concepts by case studies.

The following techniques are presented in this chapter:

• Optimizing runfile size

• Managing common areas

• Preparing procedures for sharing

• Creating external commands

• Creating shared data

• Managing the stack

• Replacing program modules

• Creating and using templates

• Allocating base areas

• Using relative segment numbers

4-1 Second Edition

4 ADVANCED SEG TECHNIQUES

To follow the explanations of loads in this chapter, you should be familiar with maps produced
by SEG. How to read these maps is explained in Chapter 3.

OPTIMIZING RUNFILE SIZE

A runfile can be made smaller with the following techniques.

• Instead of using both segments '4001 and '4002 for procedure and data, place both
procedure and data in one segment with the MIX command of VLOAD.

• Instead of using segment '4000 for SEG and one or more other segments for the
program, use RUNIT, SEG's small execution module, and fit all of a small program into
the same segment with it.

• If any symbols or common blocks would be loaded into segment '4001 or higher by
default, use the SYMBOL or COMMON commands of VLOAD to put them into '4000
or another segment that you choose.

The following three sections illustrate these techniques.

PERFORMING A MIXED LOAD

The MIX command of VLOAD allows you to put procedure and data in the same segment, thus
using one segment instead of two for a small program (less than 128K bytes). Once MIX is used,
the following commands in the load must use specific or absolute segment numbers, so the
commands are prefixed by S/ (specify segment) or D / (duplicate the previous command's
arguments).

The following example is the one used in the section Looking for Wasted Space in Chapter 3.
The program is Example 1 in Appendix D. After verifying that the program is small enough to
fit into one segment, the user does the following load. The map shows segment allocation as
represented in Figure 4-1.

SEG -LOAD
[SEG rev x.x]
$ MIX /*C0MPRESS EVERYTHING INTO ONE SEGMENT
$ L0 TMDT
$ LI
LOAD COMPLETE
$ MAP 1

*START 4001 001302 +STACK 7777 000000 *SYM 000031

SEG. | TYPE LOW HIGH TOP
0 Q 1

$ /*'724 WORDS USED, BUT ALL IN ONE SEGMENT

DOC3524-192 4-2

A D V A N C E D SEG TECHNIQUES 4

4001

4000

Empty

Data

Proc

SEG

1725

1363

1000

Allocation of a Small Program with MIX (Compression)
Figure 4-1

The map shows that all of the program is in segment '4001, which is labeled as a procedure
segment.

MAKING A RUNIT FILE

The runfile produced in the previous example still uses two segments to run a tiny program,
because segment '4000 is required by SEG. The next example uses not only MIX but also SPLIT,
RETURN, and SHARE. SPLIT defines where the program stack will be placed, with procedure
loaded below that address and data loaded above that address. The example uses SPLIT to place
everything in segment '4000. SPLIT can also load a small execution program, RUNIT, which
replaces the large SEG utility. RETURN takes the user back to SEG-level commands. SHARE
converts the segmented runfile into a single-segment or SAM (sequential access method) file.
The SAM file may be executed with the PRIMOS command RESUME, which executes more
quickly than SEG. In addition, the prefixes S/ and D/ are used to specify which segments are to
be used for procedure and data. These prefixes are listed with commands in Chapter 6.

The purpose behind this series of steps is to make a single-segment or RUNIT file, similar to an
R-mode file but using V-mode instructions, and located in segment '4000. A small program can
thus be compressed from three segments (procedure, data, and SEG) to one. Further, it can be
run with RESUME, the PRIMOS command that expects to find an executable file and load it
into segment '4000.

Before a detailed discussion about these steps, here is an example of a simple standard load that
reduces the size of a small runfile from three segments to one. The program is Program 6 in
Appendix D. Its ECB is defined as MAIN with the statement PROGRAM MAIN.

4-3 Second Edition

4 ADVANCED SEG TECHNIQUES

OK, SEG -LOAD
[SEG rev x.x]
$ SPLIT 167777 400

$ MIX
$ S/LO TMDT 0 4000

$ D/LI
LOAD COMPLETE
$ MAP TMDT.MAP
$ RETURN
| SHARE
TWO CHARACTER FILE
CREATING AL4000
ft DELETE
ft 0
OK R AL4000

0 150000/*SPLIT SEGMENT '4000,

/•PROCEDURE BELOW '167777, STACK STARTS

/•AT '150000, AND LOAD RUNIT IN '4000 AT '1000

/•ALLOW BOTH PROCEDURE AND DATA IN SAME SEGMENT

4000 /*LOAD PROCEDURE IN '4000, DATA IN '4000

/•SAME FOR SYSTEM LIBRARIES

/*SAVE A MAP

A B A C K TO SEG LEVEL

/•CREATE A SAM (UNSEGMENTED) FILE

ID: AL A T W O CHARACTERS ONLY BEFORE REV. 19.2

/•SEGMENTED FILE IS NO LONGER NEEDED

/•SAM FILES MUST BE EXECUTED WITH RESUME

DATE IS 012282
TIME SINCE MIDNIGHT IN MINUTES+SECONDS+TICKS:

825 41 55
USER IS ANNE
OK,

The steps in this load are discussed below. Here is the map that was saved in TMDT.MAP. You
can see that only one segment , '4000, is used. It is listed twice in section 2 of the map because
SPLIT has established it as bo th a p rocedure and a data segment . RUNIT is listed in OTHER
SYMBOLS, so a separate segment is not required for SEG to reside in. The d iagram of the new,
opt imized runfi le is Figure 4-2.

•START 0266 001206 +STACK 7777 000000 •SYM 000035

SEG. #
UQO0

TYPE
PROC
DATA

LOW
§01000
7 7 7 7 7

HIGH
001711
000000

TOP
)0 1 7
\ ts 7 ??

ROUTINE ECB
STACK_OV 4000 001212
MAIN 4000 001530
F$ERX 4000 001620

PROCEDURE
4000 001152
4000 001367
4000 001572

ST, SIZE
000030
000112
000020

LINK FR,
000024
000046
000026

4000 000612
4000 001124
4000 001220

DIRECT ENTRY LINKS
EXIT 4000 001646 MKONU$ 4000 001652 TIMDAT
TNOU 4000 001662 TNOUA 4000 001666 F$IFW
F$XFR 4000 001676 F$CB77 4000 001702 F$STOP

4000 001656
4000 001672
4000 001706

COMMON BLOCKS
STACKS 4000 001006

OTHER SYMBOLS
001000 RESUME 4000 001053 F184DONE 4000 001572

DOC3524-192 4-4

ADVANCED SEG TECHNIQUES 4

4000

RUNIT Slack

Direct Entries
FSERX, FSDONE
MAIN

STACK—OV
RESUME
STACK$
RUNIT

177777

150000

1646-1711
1620
1367

1152
1053
1006
1000

0

Single-segment or RUNIT Load
Figure 4-2

More About RUNIT

RUNIT is the part of SEG that executes programs. It is small enough that it can usually occupy
the same segment with a small user program. Thus it is a useful substitute for the entire code of
SEG. SEG can be used to invoke a runfile only if segment '4000 contains nothing below a
certain address ('150000 in Rev. 19.2). It is possible to load small programs into the same
segment with SEG, but in a later software revision, SEG may be larger, and your program will
overwrite it. Therefore, if you want to put a program in this segment, it is better to load RUNIT
and plan on executing the program with RESUME. (This manual gives no examples of
programs loaded into segment '4000 with the entire SEG program, except when NEW will be
required for making templates.)

Be careful of the following points when using RUNIT.

• RUNIT expects the user program to be named MAIN. This means that the entry
control block or ECB set up by the compiler or assembler must be so named. See the
Glossary for how to name the ECB in each Prime language.

• Use format 2 or 3 of SPLIT (Chapter 6), which loads RUNIT, only if all loaded code and
data are in segment '4000 or below (shared segments).

• The program must fit into one segment (128K bytes), except for its common blocks.

4-5 Second Edition

A D V A N C E D SEG TECHNIQUES

The start address of the runfile is now RUNIT, so at execution time RUNIT initializes the stack
at its current default and transfers control to MAIN. There is a way, however, to keep the stack
from being initialized if you want to maintain the current stack value during a program
interrupt (such as during debugging). RESUME is an entry point that prevents RUNIT from
initializing the stack. To set the start address to RESUME instead of RUNIT, use the PRIMOS
commands RESTORE and SAVE with special parameters to change the starting address. (See
the PRIMOS Commands Reference Guide.)

Usage: Three steps are required to incorporate RUNIT into segment '4000.

1. Assemble or compile the program as a subroutine whose ECB is labeled MAIN (see
ECB in the Glossary for details). In our example, the FORTRAN statement PRO­
GRAM MAIN labels the ECB.

2. Use the loader's SPLIT command to declare segment '4000 as a split segment. Use
MIX so SEG will know that both procedure and data may go into the same segment.

3. Complete the load using the prefixes S/, D/ , and P/ as required. Once a segment has
been split, it is addressable only with the S/ or P/ command (or with D/ following an
S/ or P/ command), since split loading must use absolute segment numbers. These
commands are presented in Chapter 6.

4. Return to SEG via the RETURN subcommand and use SEG's SHARE command to
create an unsegmented runfile.

MANAGING COMMON BLOCKS

Large common blocks are generally the easiest targets for saving space. Uninitialized common
blocks (those that have not been given a value within a program) can be removed from the
runfile entirely, thus decreasing runfile size. Such common blocks can also be placed within
segment '4000. Placement within segment '4000 allows the program to use some of the many
pages that SEG requires be allocated but that are not normally used. Be careful, however, that
they are placed at an address high enough to avoid overwriting SEG or RUNIT's stack in
segment '4000.

If a common block has already been created by a compiler, use SYMBOL to place it. If not,
allocate room with A/SYMBOL, which specifies the size.

SYMBOL defines uninitialized common blocks without reserving space for them, thus keeping
down the runfile size. Such an uninitialized block, if loaded into a segment that has other
contents (such as '4001 or '4002) does have space reserved for it. If you place it in a segment of
its own, however, it does not actually take up runfile space (and does not appear on the map). It
is, nevertheless, used when referenced. An example of this technique is given in Chapter 3
under Finding Why There Are No More Available Segments.

A common block, once defined with SEG or in a module that is loaded, cannot be redefined as
larger. If it is redefined as smaller, a warning message is displayed at Rev. 19.2. To suppress the
warning, use the VLOAD subcommand NSCW. To reactivate the warning, use SCW.

The libraries CBLLIB, PASLIB, and PL1GLB include some common blocks. Therefore, whenev­
er you are loading all of a program into segment '4000, you must manage these common blocks
with the command COMMON ABS 4000 in the load.

DOC3524-192 4-6

ADVANCED SEG TECHNIQUES 4

An Example Using SYMBOL

This example shows how to build a default runfile that contains large common blocks, then
inspect its map for ways to optimize. The program (Example 9 in Appendix D) contains two
large uninitialized common areas, AA and BB. The basic default load is:

OK, SEG
[SEG rev

-LOAD
x.x]

$ LO LARGE
$ LI
LOAD COMPLETE
$ MAP
•START

SEG. #
4001
4002
4003
4004

ROUTINE
MAIN
F$ERX

4002 000004 *STACK 7777 000000 *SYM

TYPE
PROC
DATA
DATA
DATA

LOW
001000
000000
177777
177777

ECB
4002
4002

DIRECT ENTRY LINKS
EXIT
F$IFW

4001
4001

000004
040240

001310
001324

HIGH TOP
001343 001343
040265 040265
000000 177777
000000 143423

PROCEDURE ST. SIZE
4001 001061 000062
4001 001262 000020

TNOU 4001 001314
F$XFR 4001 001330

000032

LINK FR.
000054 4002 177400
000026 4002 037640

TNOUA 4001 001320
F$CB77 4001 001334

COMMON BLOCKS
BB 4002 000054 040164 AA 4003 000000

OTHER SYMBOLS
F184DONE 4001 001261

$ EXEC
START OF LARGE ARRAY
END OF LARGE ARRAY
START OF ARRAY 2
END OF ARRAY 2
OK,

An inspection of the map shows that four segments are used for this small program. In
addition, the map does not show it, but segment '4000 is required for SEG. Figure 4-3 diagrams
segment allocation in this default load.

4-7 Second Edition

4 A D V A N C E D SEG TECHNIQUES

4004

4003

4002

4001

4000

AA

AA

BB
Link_frames

Procedure, stack

SEG

Default Segment Allocation for LARGE.SEG
Figure 4-3

To optimize the runfile, use the commands shown for making RUNIT files in this chapter, plus
the SYMBOL command to relocate the common blocks. The block AA is so large that it requires
its own segments, but BB can fit into '4000 with everything else.

Now the load map below shows a reduction in size, as diagrammed in Figure 4-4.

OK, SEG
[SEG re\
$ SPLIT
$ MIX
$ SY BB

-LOAD
x.x]

4000

4000 040164
$ S/L0 LARGE 0 4000 4000
$ D/LI
LOAD COMPLETE
$ MAP
*START

SEG. #
4000
4000
4001
4002

ROUTINE
STACK-
MAIN
F$ERX

0266 177425 *STACK 7777 000000

TYPE
PROC
DATA
DATA
DATA

LOW
001000
177777
177777
177777

ECB
.OV 4000

4000
4000

001212
001520
001616

DIRECT ENTRY LINKS
EXIT
TNOUA
F$CB77

4000
4000
4000

DOC3524-192

001644
001660
001674

HIGH
001703
000000
000000
000000

PROCEDURE

*SYM

TOP
001703
003777
177777
143423

ST
4000 001152
4000 001313
4000 001570

MKONU$
F$IFW
F$STOP

4000
4000
4000

4-8

. SIZE
000030
000062
000020

001650
001664
001700

000040

LINK FR.
000024
000054
000026

TNOU
F$XFR

4000 000612
4000 001114
4000 001216

4000 001654
4000 001670

A D V A N C E D SEG TECHNIQUES 4

COMMON BLOCKS
STACK! 1000 001006
AA 4001 000000

BB 4000 040164

OTHER SYMBOLS
RUNIT 4000 001000 RESUME 4000 001053 F184DONE 4000 001570

S RETURN
jj SHARE
TWO CHARACTER FILE ID;
CREATING LC4000
DELETE

I 0
OK, R LC4000
START OF LARGE ARRAY
END OF LARGE ARRAY
START OF ARRAY 2
END OF ARRAY 2
OK,

LC

4002

4001

4000

AA

AA

Stack
BB
Data
Other Procs
RUNIT

Controlled Segment and Common Allocation for LARGE.SEG
Figure 4-4

Note

This compression of space is not the most efficient strategy in many cases. Often a
programmer would prefer to load each common block on a page boundary, if not in a
separate segment, for faster access.

4-9 Second Edition

4 ADVANCED SEG TECHNIQUES

PREPARING PROCEDURES FOR SHARING

Shared procedures, as discussed in Chapter 1, use one copy of segments below '4000 for all
users. (Chapter 1 also discusses the notion of pure code, which is usually necessary in a shared
procedure.) The advantages of sharing are:

• Saving of memory — only one copy of code is necessary for all users.

• Decreased restore time — one copy is restored.

• Reduced paging.

Large procedures that use relatively small amounts of data and that are run by several jobs
simultaneously are excellent candidates for shared procedures. Examples include Prime's
EDITOR or a user-written order entry system. In general, however, programs that are small or
that will normally only be run by one user at a time are not candidates for sharing.

Note

This section assumes that you want to run a program from segment '4000, as well as share
it. It is possible also to share a program whose data (impure) area starts in segment '4001 or
above. This requires using an interlude program to run the shared program. Usually you
would only follow this more complicated method if the linkage section of the program
were too large to fit into one segment.

Steps in Creating a Shared Program

The program to be shared must be named MAIN. The procedure and linkage of the program
must each occupy no more than one segment.

1. Obtain the shared segment number and address range from the System Administra­
tor. In Rev. 19.2, segments '2140 to '2167 are reserved for Prime-supplied shared
subsystems (Editor, FORMS, etc.). Segments '2030 to '2037, '2170 to '2177, and '2300 to
'2317 are available as public shared segments. See the Rev. 19.1 Update to the System
Administrator's Guide for a complete list of shared segments and their current
assignments.

2. Use SPLIT to load the impure part of the procedure (data and link frames) into
segment '4000 along with RUNIT. At the same time, load the pure procedure part of
the program into the segment address range assigned by the System Administrator.
MIX is not necessary because procedure and data will be separated.

3. Use SEG's SHARE command to create one unsegmented runfile for each segment
under '4001 that contains initialized data.

4. The segments numbered lower than '4000 (public segments) must then be shared by
the System Administrator with the PRIMOS command SHARE. It should be noted
that these segments need to be reinitialized in every cold start of PRIMOS. The
System Administrator should, therefore, also include in the cold start command file
(CMDNC0>C_PRMO or CMDNC0>PRIMOS.COMI) the PRIMOS SHARE com­
mands necessary to reload these segments, and include the program in the UFD
named SYSTEM. See the System Administrator's Guide.

DOC3524-192 4-10

ADVANCED SEG TECHNIQUES 4

The next example shows h o w to p repare a p rocedure for sha r ing . The source file is
RHELP.PLIG, wh ich is P rogram 8 in Append ix D. It lists p h o n e n u m b e r s of people w h o can
give emergency he lp on a product . Pu t t ing it in segment '4000 requi res relocation of common
blocks, since PL1G treats some of its l ibrary rout ines as common blocks.

On a default load, the load map for RHELP looks like this:

OK, SEG -LOAD
[SEG rev x .x]
$ LO RHELP
$ LI PL1GLB
$ LI
LOAD COMPLETE
$ MAP
•START 4002 000004 •STACK 7777 000000 *SYM 000213

SEG. |
4001
4002

TYPE
PROC
DATA

LOW
001000
000000

HIGH
045025
057371

TOP
045025
057371

ROUTINE
MAIN

P$ST0P
P$EINF
HIS
P$E0UTF

ECB
4002
4002
4002
4002
4002
4002

PROCEDURE ST. SIZE LINK FR.
000004
000027
000674
000732
000762
002150

4001
4001
4001
4001
4001
4001

002077
002165
007140
007301
007361
010123

000340
000232
000030
000102
000732
000102

000133
000133
000032
000201
000201
000165

4002
4002
4002
4002
4002
4002

177400
177400
000274
000326
000326
001544

COMMON BLOCKS
SYSPRINT 4002
PICURSOR 4002
P$STAT 4002

OTHER SYMBOLS
P$ENTP 4001
F191RETS 4001

000134
001130
001136

043434
044606

000257
000001
001006

P$APPC
P$MXLB

SYSIN
P$FCBC
P$BUSY

4001
4001

4002
4002
4002

044042
044606

000414 000257
001132
003464 000002

P$MDLB 4001
P$MNLB 4001

044104
044622

$ Q

To make a file for shar ing , assume that the System Adminis t ra tor has ass igned segment '2037,
and use the fol lowing steps.

OK, SEG -LOAD
[SEG rev x .x]
$ COMMON ABS 4000
$ SPLIT 167777 4000 150000

$ S/LO RHELP 0 2037 4000
$ D/LI PL1GLB
$ D/LI

/* NOTE WELL FOR PL1GLB
/•SPLIT SEGMENT '4000 AT '167777,
/•STACK AT ' 150000
/•LOAD RHELP: PROC IN '2037, DATA IN '4000
/•DITTO FOR PL1G LIBRARY
/•DITTO FOR SYSTEM LIBRARIES

4-11 Second Edition

4 ADVANCED SEG TECHNIQUES

LOAD COMPLETE
$ MAP
•START 4035 175324 *STACK 7777 000000 *SYM

SEG. f
2037
4000
4000

ROUTINE

TYPE
PROC
PROC
DATA

LOW
001000
001000
017000

ECB
STACK_OV 4000
MAIN

P$STOP
P$EINF

UH
P$EOUTF

4000
4000
4000
4000
4000
4000

001212
001236
001261
002126
002164
002214
003402

HIGH
045031
060623
076371

PROCEDURE
4000
2037
2037
2037
2037
2037
2037

001152
002077
002165
007140
007301
007361
010123

TOP
045031
060623
076371

ST. SIZE
000030
000340
000232
000030
000102
000732
000102

000222

LINK FR.
000024
000133
000133
000032
000201
000201
000165

4000
4000
4000
4000
4000
4000
4000

000612
000632
000632
001526
001560
001560
002776

COMMON BLOCKS
STACKS 4000
SYSIN 4000
P$FCBC 4000
P$BUSY 4000

OTHER SYMBOLS
P$ENTP 2037
F191RETS 2037
RUNIT 4000

001006
001646
002364
004716

043434
044606
001000

000257

000002

P$APPC
P$MXLB
RESUME

SYSPRIN1
P$CURSOF
P$STAT

2037
2037
4000

1 4000
1 4000

4000

044042
044606
001053

001366 000257
002362 000001
002370 001006

P$MDLB 2037
P$MNLB 2037

044104
044622

$ RETURN
jf SHARE
FILE ID: RH
CREATING RH2037
CREATING RH4000
jj DELETE

If Q

/•RETURN TO SEG LEVEL
/•CREATE SAM FILE

/•DELETE SEGMENTED FILE RHELP.SEG

Now the System Administrator must use the SHARE command on RH2037:

OPR 1
SHARE SYSTEM>PANIC2037 2037 /•SHARE SEGMENT 2037 FOR EXECUTE ONLY
OPR 0

The System Administrator should also insert RH2037 in SYSTEM and the share commands in
CMDNC0>C_PRMO or CMDNC0>PRIMOS.COMI. Then when anyone enters RESUME
RH4000, the same copy of RH2037 is used. (This is the copy in segment '2037.)

DOC3524-192 4-12

ADVANCED SEG TECHNIQUES 4

Append ix E conta ins a CPL file that loads a p rogram and t h e n shares it if the segment n u m b e r
entered by the user indicates a shared segment .

Sharing Two Programs in the Same Segment

If two small p rograms are to be shared, you may w a n t to load t h e m into the same shared
segment to save space. You mus t be sure that the p rograms do no t over lap . Since the programs
will be loaded in separate load ing sequences , SEG wil l no t load o n e of t h e m automatical ly at a
h igh address in the segment . To load one p rogram at a h i g h address , first use A/SYMBOL to
reserve the low addresses in the segment .

The next example uses the p rogram CHECK.PASCAL (listed be low in the section on shared
data) and the set of PL1G p rog rams listed in Example 10 in Append ix D. Suppose that a user has
loaded CHECK in s egmen t '2037 w i t h the p rocedure s h o w n in the example above. The m a p for
CHECK shows that its h ighes t address in segment '2037 is '3721:

•START 0266 177064 *STACK 4000 150000 *SYM 000062

SEG. #
2037
4000
4000

TYPE
PROC
PR0C##
DATA##

LOW
001000
001000
177777

HIGH
003721
003061
000000

TOP
003720
003061
016776

The two p rograms do no t interact , bu t it is possible that different users may call the two
programs s imul taneous ly . The user k n o w s from the map that CHECK e n d s at address '3721 in
segment '2037. Therefore , the c o m m a n d A / S Y M B O L D U M M Y PR 2037 5000 reserves e n o u g h
space to protect the par t of CHECK that is in segment '2037. No te that it is necessary to inc lude
the specification PR (procedure segment) . Otherwise SEG assumes that a segment w i th a
symbol in it is a data segment , and wil l not load the p rocedure for Example 10 in to the same
segment .

It is not necessary to reserve any space in segment '4000 because each p rog ram wil l use a
different copy of tha t segment .

OK, SEG -LOAD
[SEG rev x . x]
$ COMMON ABS 4000 /*NECESSARY TO PLACE PL1GLB
$ A/SY DUMMY PR 2037 5000 /*SKIP PART OF ' 2 0 3 7 , MAKE IT A PROC SEGMENT
$ SPLIT 167777 4000 150000 /*THE REST IS STANDARD SHARING
$ S/LO MAIN 0 2037 4000
$ D/LO SUB1
$ D/LO SUB2
$ D/LI PL1GLB
$ D/LI
LOAD COMPLETE
$ MAP 1
•START 0266 107200 *STACK 4000 150000 *SYM 000177

SEG. #
2037
4000
4000

TYPE
PROC
PROCH
DATA##

LOW
006000
001000
177777

HIGH
033177
057251
000000

TOP
033177
057251
167776

4-13 Second Edition

4 A D V A N C E D SEG TECHNIQUES

$ RETURN
SHARE
ENTER FILE ID: LADD
CREATING LADD203 7
CREATING LADD4000
i QUIT

It is not recommended that you try to share two programs in the same segment if one of them
requires base areas. Such programs require that three separate areas be reserved — one for the
low offsets, another for the high offsets, and a third for the procedure code. Then the second
symbol must be expunged.

CREATING EXTERNAL COMMANDS

External commands are PRIMOS-level commands, all located in the UFD named CMDNCO on
the master disk. Examples are ED, COBOL, and SEG itself. You can create your own external
commands to customize your system, or to make often-used programs run faster. You must
create an unsegmented runfile, since the operating system recognizes only runfiles that can be
RESUMEd and executed from segment '4000.

There are two ways to do this. One is to use SEG commands: SPLIT to load RUNIT into location
'1000 of segment '4000 and SHARE to create a single-segment runfile as shown in the first
section of this chapter. The other is to put into CMDNCO an interlude program that runs the
other program. The interlude may be a CPL file or one created through CMDSEG, which is
discussed in Appendix B.

The single-segment runfile or the CPL file must be installed in CMDNCO by the System
Administrator.

The following sequence demonstrates preparation of an external command using the first
method. The source file is RHELP.PL1G (Example 8 in Appendix D), which was also used in the
first example above for preparing shared programs. The default load with its load map is
shown above. To make an external command with SEG requires four steps. The first two are the
same as in the previous example for preparing shared procedures.

It is not required that an external command be shared as in this illustration. For example, the
command NSED brings the nonshared editor into memory for use in preparing files for
installing programs before a system has been shared. But for everyday use it would be hard to
imagine an external command that would be better unshared.

1. Get from your System Administrator the number of a shared segment that you may
use. This example uses '2037.

2. Prepare a single-segment file using SPLIT and SHARE. The MIX command is not
necessary because here you want to keep procedure and data in different segments.
The data will go into your private segment '4000 and the procedure will be shared in
segment '2037.

3. Have your System Administrator transfer the resulting runfile named xx4000 to
CMDNCO and share the lower-numbered file with the PRIMOS command SHARE.
Probably you will want the file in CMDNCO to have a more descriptive name than
the one created by SHARE. Also the Administrator must install the file named xx2037

DOC3524-192 4-14

ADVANCED SEG TECHNIQUES 4

in the UFD SYSTEM and the appropr ia te share c o m m a n d in CMDNCO > C _ P R M O or
C M D N C 0 > P R I M O S . C O M I .

4. N o w eve ryone on the system can use this p rogram s imply by i nvok ing its n e w name
as a PRIMOS c o m m a n d l ine.

OK, SEG -LOAD
[SEG rev x . x]
$ COMMON ABS 4000
$ SPLIT 167777 4000 150000
$ S/LO RHELP 0 2037 4000
$ D/LI PL1GLB
$ D/LI
LOAD COMPLETE
$ MAP RHMAP /*MAP WILL BE SAME AS IN LAST EXAMPLE
$ RETURN
SHARE
TWO CHARACTER FILE ID: RH
CREATING RH2037
CREATING RH4000
DELETE
Q

N o w the System Admin i s t ra to r copies RH4000 to CMDNCO a n d RH2037 to SYSTEM, giving
them more memorab le names , such as PANIC.SAVE and PANIC2037. The System Adminis t ra­
tor t hen shares the p rocedure segment as s h o w n above for shared p rograms .

After PANIC2037 has been shared , anyone on the system may en te r

PANIC

and display a list of peop le w h o can he lp .

CREATING SHARED DATA

It can be desirable for several users to have access to the same shared data. Some examples are
user records that mus t be read for several purposes , as wel l as accessed for updates . This data
can be instal led in a shared segment . However , the data mus t be re ins ta l led each t ime the
system is b rough t u p from a cold start.

Note that COBOL does no t suppor t shared data areas because it does no t suppor t common
blocks.

Here are the steps for creat ing shared data.

1. The s egmen t mus t be shared before any read ing or wr i t ing of data in the segment .
Shar ing mus t be d o n e by the System Adminis t ra to r from the system supervisor
te rminal . The fo l lowing commands share a s egmen t for wr i t i ng as wel l as reading.

OPR 1
SHARE 2031 700 /*SHARE SEGMENT 2031 FOR READING AND WRITING
OPR 0

4-15 Second Edition

4 ADVANCED SEG TECHNIQUES

2. The user program must then place all of its shared data within a named common area.
A FORTRAN program does this with COMMON. Pascal uses the indication {$E+ }.
PL1 uses the EXTERNAL attribute. PMA uses the pseudo-op COMM.

3. At load time, the named common area must be defined with SYMBOL so that it refers
to the shared segment.

Example of Shared Data

The following FORTRAN 77 program puts a number into a shared segment.

PROGRAM SHRDTA
INTEGER*2 SIGNAL
COMMON/SHARED/SIGNAL
SIGNAL = 0
CALL EXIT
END

The next p rogram, wr i t t en in Pascal, reads the number .

PROGRAM CHECK;
VAR

($E+)
SHARED: INTEGER;

{$E-}
BEGIN

SHARED := 1;
WHILE SHARED = 1 DO; {NOTHING]
{WAIT FOR F77 PROGRAM TO CHANGE SIGNAL TO 0)
WRITELN ('OK TO PROCEED')

END
END.

The fol lowing load procedures use the SYMBOL command to def ine p lacement of the common
area for the p reced ing two programs. In the load maps, segment '2037 is s h o w n in C O M M O N
BLOCKS A N D OTHER SYMBOLS, but not at the b e g i n n i n g of the map because the data is not
init ial ized.

OK, SEG -LOAD / * FOR FORTRAN PROGRAM
[SEG r ev x . x]
$ SYMBOL SHARED 2037 0 /*2037 is allocated by the System Administrator
$ LO SHRDTA
$ LI

LOAD COMPLETE
$ MAP
•START 4002 000004 *STACK 7777 000000 *SYM 000023

SEG. # TYPE LOW HIGH TOP
4001 PROC 001000 001062 001061

DOC3524-192 4-16

ADVANCED SEG TECHNIQUES 4

4002 DATA 000000 000061 000061

/*FOR PASCAL PROGRAM

COMMON BLOCKS
SHARED 2037 000000

OTHER SYMBOLS
F184DONE 4001 001013

$ EXEC
OK, SEG -LOAD
[SEG rev x.x]
$ SYMBOL SHARED 2037 0
$ LO CHECK
$ LI PASLIB
$ LI
LOAD COMPLETE
$ MAP
•START 4002 000004 *STACK 7777 000000 *SYM 000052

SEG. #
4001
4002

TYPE
PROC
DATA

LOW
001000
000000

HIGH
003711
001627

TOP
003710
001627

COMMON BLOCKS
P$AINP 4002 000054 000313 P$AOUT 4002 000370 000313
P$ASET1 4002 000704 000020 P$ASET2 4002 000724 000020
PIASETI 4002 000744 000001

OTHER SYMBOLS
F184DONE 4001 003624 SHARED 2037 000000

$ EXEC
OK TO PROCEED

/•LOADS THE DATA INTO SEGMENT 3027

The data is now in a shared segment, while the programs run in the user's own space:

4002

4001

SHAREDATA

User A User B

2037 SHARED

4-17 Second Edition

4 A D V A N C E D SEG TECHNIQUES

In this example, the Pascal program loads the correct data into the shared segment. In many
applications, the System Administrator must be sure that the correct shared data is loaded at
system start.

EXTENDING THE STACK

If the message STACK_OVF$ is displayed during execution, the stack can be extended with the
STACK subcommand of VLOAD. To force use of a whole segment, set the size operand to
'177774. If more than one segment is needed, use the SK subcommand of MODIFY discussed in
the next section.

The default stack size may be changed during normal loading, or later by modifying a runfile.

The following example extends the stack of a previously created runfile. The program consists
of the PL1G modules in Example 10 in Appendix D.

The first map below shows normal default stack placement in the first segment above '4000 that
contains 2048 free addresses. In this case, that segment is '4001. The stack size is determined
only at run time, but there is room for ('177776 - '026255) or '151521 16-bit addresses.

If you might need more room, the following procedure gives the stack a whole segment.

OK, SEG
[SEG rev x .x]
RESTORE MAIN
MAP 1

•START 4002 000004

/•RESTORE EXISTING RUNFILE
/•LOOK AT ORIGINAL STACK

•SYM 000166

SEG. i
4001
4002

TYPE
PR0Cjf#
DATA

LOW
001000
000000

HIGH
026255
056025

TOP
026255
056025

QUIT
VLOAD •
ST 177774
SAVE
MAP 1

•START 4002 000004

/•DON'T OVERWRITE ANYTHING
/•STACK NEEDS A WHOLE SEGMENT
/•SAVE SO WE CAN SEE STACK ON MAP
/•LOOK AT NEW STACK

•SYM 000166

SEG. # TYPE LOW HIGH TOP
4001 PROC 001000 026255 026255
4002 DATA 000000 056025 056025

$ QUIT

Another example is in Chapter 3 on mapping.

DOC3524-192 4-18

A D V A N C E D SEG T E C H N I Q U E S 4

RELOCATING THE STACK

The stack is relocated automatical ly w i th the SPLIT c o m m a n d of VLOAD. It may also be
necessary to relocate the stack if it requires more than one segment , or if it overwri tes segment
'4035, wh ich is n e e d e d for t he symbol table in Rev. 19.

The SK s u b c o m m a n d of MODIFY is used if it is necessary to relocate the stack or to extend it
into more than one segment . The fol lowing example demons t ra tes this p rocedure on the
runfile already created and modif ied in the example above.

OK, SEG
[SEG rev x . x]
jf RESTORE MAIN
MODIFY
$ SK 4010 10 4011

$ RETURN
jf MAP 1
•START 4002 000004

/*GET AN EXISTING RUNFILE

/•PUT STACK IN 4010, EXTENSION IN 4011 AND BEYOND,
/•LEAVING FIRST '10 LOCATIONS FOR STACK HEADER

•SYM 000166

SEG. #
4001
4002

TYPE
PROC
DATA

LOW
001000
000000

HIGH
026255
056025

TOP
026255
056025

jj QUIT
OK.

REPLACING PROGRAM MODULES

If a large runfi le r equ i r ing a long load t ime must be modif ied, modu les in it can be replaced
quickly w i th the RL c o m m a n d of MODIFY. This t echn ique avoids a l eng thy re loading after a
patch. It is r e c o m m e n d e d only for t emporary tests, as it uses extra space.

The fol lowing example executes a runfi le conta in ing the modu les in Program 10 in Append ix
D. Then it replaces the first subrout ine . The n e w subrou t ine must have the same in ternal
p rogram n a m e (ECB name) as the one it replaces.

OK, SEG MAIN

this is main
this is subl
this is sub2
end of run

OK, PL1G SUB1A
0000 ERRORS (PL1G-REV 19.0.0)

OK, SEG
[SEG rev x.x]
RESTORE MAIN /•GET EXISTING RUNFILE

4-19 Second Edition

4 ADVANCED SEG TECHNIQUES

VLOAD * /*DON'T OVERLAY ANYTHING
$ RL SUB1A /*PUT SUB1A IN PLACE OF ECB WITH SAME NAME
LOAD COMPLETE
$ Q
OK, SEG MAIN

this is main
this is replacement
this is sub2
end of run
OK,

This new runfile should not be used permanently. The substitute subroutine is added at the
top of the procedure and data segments, but the storage that was occupied by the old
subroutine is not made available for reuse. Thus, with repeated updates, the runfile can become
unwieldly and inefficient.

Note

In PL1G or Pascal programs with initialized common blocks, RL will not change the
initialization.

CREATING AND USING TEMPLATES

A user or group may want to have a customized load file that always contains certain libraries
and subroutines. This file can then be used as the basis for many application runfiles that need
the same support libraries and routines. This kind of customized file is called a template. It is a
general purpose procedure (usually shared) that must be completed with specific applications
before being run.

The major use of templates is to move pure code into shared procedure segments, thus
lowering memory usage. Unlike the system libraries that use direct entry links, templates do
not allow reloading of the shared code without reloading all programs that use this code. The
advantages of templates, on the other hand, are the ease of creation and the simplification of
procedures for loading user programs. In a very large application program, the use of
templates may reduce the execution time by sixty percent over conventional techniques.

A private library may also be created with the EDB utility described in the Subroutines
Reference Guide.

There are three steps in creating shared templates:

1. Create the shared procedure segments.

2. Create the template — a runfile with shared segments. Specify that the main routine
will be, not the first one in the template, but the first application routine to be loaded
later.

3. Load an application program into a copy of the shared template.

DOC3524-192 4-20

A D V A N C E D SEG TECHNIQUES 4

Creating the Shared Procedure Segments

To create a template, use SEG without the -LOAD option to create a new, empty runfile. Then
load the procedure, data, and common blocks that you have so far. Probably you will want to
load procedure into a shared segment ('2xxx). It may also be desirable to load data into segment
'4000 to keep the template small. In the example below, segment '2030 is allocated as the user's
shared segment. Procedure and common blocks are loaded into segment '4000, which is split at
'150000 so that all of SEG can also be in segment '4000. This model runs with Rev. 19.1 or 19.2,
but in a later software revision, SEG may be enlarged so that the template has to be reloaded.

OK, SEG
[SEG rev x.x]
| LO jJKIDA /* CREATE A SEGMENTED RUNFILE
$ SP 4000 150000 /* SEG ENDS BELOW '150000 AT REV.19.2
$ CO ABS 4000 /* ALL DATA IN '4000
$ S/F/LI VKDALB 0 2030 4000 /* PROCEDURE IN '2030, LINKAGE IN '4000
$ D/PL /* LOAD PURE LIBRARIES LAST
$ MAP MAPFILE
LOAD COMPLETE
$ RE
jf SH /* CREATE SEGMENT FOR SHARING
FILE ID: KI /*THR0UGH 19.1 THIS IS ONLY TWO CHARACTERS
CREATING KI2030
$ QUIT

Segment '4000 is laid out with the SPLIT command without RUNIT, to permit NEW to be used
to copy the template and CMDSEG to be used to set up runfile invocation. S/F/LI specifies the
segments for the procedure and linkage. The user should always load the pure libraries after
loading all routines that are to go in the template library.

The prefix F/ causes all modules in a library to be loaded. Most libraries are created in such a
way that when they are loaded with the LIBRARY command, only the modules that are
explicitly referenced by the user program will be loaded. In normal loading this technique is
effective, but with templates the user program is loaded after the library, so all modules in a
library most be loaded to assure that whatever is called will be there at runtime.

The SHARE command creates an unsegmented runfile for segment '2030. Nothing is in
segment '4000 yet, so no new runfile is created for it. The part of the file that goes in segment
'2030 may be prepared for sharing in this step or in later steps, as this part of the file will not be
changed by subsequent modifications.

Segment '2030 must be shared at system start, so the share command should be included in
C_PRMO.

Creating the Template

The next example illustrates the procedure for creating the template used for loading applica­
tion programs. It involves getting the segmented file created above and creating a new copy
with the start address set to 7777 0 with the START command of MODIFY. When SEG finds

4-21 Second Edition

4 ADVANCED SEG TECHNIQUES

this address in an existing runfile, the next routine loaded becomes the main routine. (The next
routine loaded will be the application routine at a later date.)

You can use NEW or COPY to copy the template before linking specific applications to it. NEW
has the advantage that the runfiles are smaller; COPY copies all segments, including the shared
segments, while NEW only copies segments '4000 and up. Before Rev. 19, use FUTIL instead of
COPY.

NEW's disadvantage is that it restricts the use of segment '4000 when creating the template. In
Rev. 19.2, there must be nothing below '120000 or NEW will overwrite SEG when it loads
segment '4000. Thus, you cannot use RUNIT to set up runfile invocations. In the example
above, format 1 of SPLIT is used so that RUNIT is not loaded and NEW can be used in the next
step below.

Most of the time it is desirable to use NEW to set up the template since the template usually
loads pure procedures into shared segments and NEW avoids copying them, thus decreasing
runfile size.

OK, SEG
[SEG rev x .x]
MODIFY #KIDA /* GET RUNFILE FROM STEP ONE
$ START 7777 0 /* THIS CAUSES NEXT ROUTINE LOADED TO BE

MAIN ROUTINE
$ NEW KIDIMP /* COPY TEMPLATE FOR LOADING USER PROGRAMS
RESTORING RUN FILE
$ RE
QUIT

Loading Programs into the Template

To use the template, restore its runfile and copy it with NEW. Then use the VLOAD command
followed by an asterisk to load in your specific program module without overwriting the other
modules.

How the template is used depends upon the size of the specific application. A small application
(less than 128K bytes) can be loaded into segment '4000, but a large one requires multiple
segments.

The final examples below illustrate the procedure for loading application programs with the
template.

Small Application Example: Here the user loads everything into segment '4000. It will run
with Rev. 19, but if SEG is enlarged at a later software revision, the template may have to be
recreated. This runfile can be executed with the command SEG KIDSML, since SEG is still
present in segment '4000.

OK, SEG
[SEG rev x.x]
| MODIFY KIDIMP /* GET TEMPLATE
$ NEW KIDSML /* COPY TO USER'S OWN RUNFILE
RESTORING RUN FILE
$ RETURN

DOC3524-192 4-22

A D V A N C E D SEG TECHNIQUES 4

1
$
$
$
$

VLOAD *
COMMON ABS 4000
S/LOAD SMALL 0 4000
MAPI MAPFILE
D/LIBRARY

LOAD COMPLETE
$

$
$
0

RETURN
MODIFY
SK 4000 172000
RETURN
QUIT

/* NOW THE USER CAN LOAD AS NEEDED

4000

Large Application Example: If a large application is to be linked to the template you may not
use segment '4000. The large example below loads everything into the user's unshared
segments, using '4001-4007 for procedure and '4010 for data. This program can be run from SEG
itself with SEG KIDBIG, since there is no user procedure or data in segment '4000. If the
program is to be run as an external command from CMDNCO, a CPL program or CMDSEG must
be used.

OK, SEG
MO KIDIMP /* SAME AS ABOVE
$ NEW KIDBIG
RESTORING RUN FILE
$ RE
VLOAD * /* NOW LOAD AS NEEDED
$ CO ABS 4010 /*THIS IS DIFFERENT FROM THE PREVIOUS EXAMPLE
$ S/LO LARGE 0 4001 4010 /*LEAVE SEGMENTS '4001-'4007 FOR DATA
$ MAPI MAPFILE
$ D/LO MORE
$ MAPI MAPFILE
$ D/LO ANDMORE
$ MAPI MAPFILE
$ D/LI
$ MAPI MAPFILE
LOAD COMPLETE
$ MAP MAPFILE 7
$ QUIT

ALLOCATING BASE AREAS

Base areas are the areas of memory reserved for out-of-range address resolution. They are
sometimes required by Prime's older COBOL, which uses many 16-bit memory reference
instructions and thus requires large base areas for their resolution. On a default load, base areas
are allocated if needed in sector zero of each procedure block. Figure 3-3 in Chapter 3 shows
such an allocation. If sector zero is used up, the message BASE SECTOR 0 FULL is displayed and
base area size must be increased.

4-23 Second Edition

4 ADVANCED SEG TECHNIQUES

Two commands are available for increasing base area size: AUTOMATIC and SETBASE. The
AUTOMATIC command causes procedures greater than '341 (decimal 225) 16-bit halfwords in
length to have a base area allocated before and after the procedure code. The base areas are
placed, not only around blocks as they are loaded, but between modules within a block (such as
a library file or a user file containing more than one procedure). Thus, AUTOMATIC may
provide base areas in more convenient places than the user can plan with SETBASE. The
disadvantage of the AUTOMATIC subcommand is that it may reserve an unnecessarily large
amount of storage as unused base area.

If a COBOL program is very large, AUTOMATIC still may not set base areas close enough
together. It may be necessary to break the program into subprograms.

If you have many small programs, use SETBASE to insert a base area of a given size at the top of
a segment. The disadvantage of SETBASE is that you can use it only to create base areas
between commands in your load. It will not place base areas between modules that you load
with one load command, as does AUTOMATIC.

As a rule of thumb, if you get the message BASE AREA OVERFLOW and you have a lot more
loading to do, use AUTOMATIC. If you have only a little more, use SETBASE. If you get the
message BASE SECTOR 0 FULL, use the AUTOMATIC command.

USING RELATIVE SEGMENT NUMBERS

Occasionally you may want to specify a load into several segments without specifying which
segments. For example, you might want common blocks to be loaded into different segments
from data, but not care what those segments are. For this purpose, you may use relative
segment numbers. These are small numbers (below 2000), which SEG replaces with its own
segment numbers above '4000.

As an example, consider the following load, in which the user specifies that the common blocks
AA, BB, and AABB should each be in its own segment, and separate from procedure segments.
(This might help optimize paging of often-used common blocks by placing them on page
boundaries.) The program is Program 1 in Appendix D. The user uses relative segments 3, 4,
and 5. The map shows that SEG has translated these relative numbers into absolute segments
'4001, '4002, and '4003, with the allocation pictured in Figure 4-5.

OK, SEG -LOAD
[SEG rev x.x]
$ R/SYMB0L AA 3
$ R/SYMB0L BB 4
$ R/SYMBOL AABB 5
$ LOAD PGM1

$ LI
LOAD COMPLETE
$ MAP
•START 4005 000004 *STACK 7777 000000 *SYM 000035

SEG. ft TYPE LOW HIGH TOP
4001 DATA 177777 000000 177777
4002 DATA 177777 000000 177777
4003 DATA 177777 000000 177777

DOC3524-192 4-24

ADVANCED SEG TECHNIQUES

4004
4005

PROC
DATA

001000
000000

001363
000101

001363
000101

ROUTINE
MAIN
F$ERX

ECB
4005 000004
4005 000054

PROCEDURE
4004 001121
4004 001276

ST. SIZE
000056
000020

LINK FR.
000054
000026

4005
4005

177400
177454

DIRECT ENTRY LINKS
EXIT 4004 001324 TIMDAT
TNOUA 4004 001340 F$IFW
FSCB77 4004 001354 F$STOP

4004 001330 TNOU 4004 001334
4004 001344 F$XFR 4004 001350
4004 001360

COMMON BLOCKS

4003
000000

OTHER SYMBOLS
F184DONE 4004 001276

$ QUIT

4005

4004

4003

4002

4001

4000

DATA

PROC

AABB

BB

AA

SEG

Specific Translation of Relative Segments
Figure 4-5

4-25 Second Edition

5
SEG AND SEG-

LEVEL COMMANDS

Following is a summary of all SEG commands, in alphabetical order within four groups:

• The SEG command

• SEG-level commands

• VLOAD or LOADER processor subcommands

• MODIFY processor subcommands

SEG displays the prompt # . The subprocessors display the prompt $.

Discussion of the first two groups above completes this chapter. Chapter 6 lists the subcom­
mands for VLOAD, and Chapter 7 explains the commands within MODIFY.

5-1 Second Edition

5 SEG A N D SEG-LEVEL C O M M A N D S

SEG-level Commands

These commands can access runfiles in memory or on disk. Rust color indicates minimum
valid abbreviations.

DELETE Delete a runfile.

HELP List SEG commands.

* LOADER Synonym for VLOAD.

MAP Print a load map of a saved or current runfile.

* MODIFY Invoke the MODIFY processor.

PA RAMS Display starting location, stack location, register settings, and keys of a
runfile.

PS D Invoke VPSD debugger.

QUIT Save runfile, close all files, and exit to PRIMOS.

RESTORE Restore a runfile to memory.

RESUME Restore a runfile to memory and begin execution.

* SAVE Synonym for MODIFY.

SHARE Create unsegmented files for procedure segments below '4001.

SI NGLE Create unsegmented file for any specified segment.

TIME Display date and time a runfile was last modified.

VERSION Display version number of SEG.

* VLOAD Invoke the loader subprocessor.

* Invokes a subprocessor

DOC3524-192 5-2

SEG A N D SEG-LEVEL C O M M A N D S 5

VLOAD or LOADER Processor Subcommands

The loader subsystem performs most of the traditional loading and linking functions. Rust
color indicates minimum valid abbreviations. See Chapter 6 for further discussion.

ATTACH

AUTOMATIC

A/SYMBOL

COMMON

D/xx

EXECUTE

F/xx

IL

INITIALIZE

LIBRARY

LOAD

MAP

MIX

MV

NSCW

OPERATOR

P/xx

PL

QUIT

R/SYMBOL

RETURN

RL

S/xx

SAVE

sew
SETBASE

SPLIT

ss
STACK

Attach to another UFD or sub-UFD.

Place base areas between procedures.

Reserve space for a defined symbol.

Specify location of common blocks.

Duplicate previous load parameters.

Save and execute a program.

Force loading of all routines in an object file.

Load the impure FORTRAN library IFTNLB.

Restart a load.

Load files from the UFD named LIB.

Load an object file.

Generate a load map of the current runfile.

Put procedure and data in the same segment.

Reserved.

Suppress warning message when common area is redefined as smaller.

Control system privileges.

Load on a page boundary.

Load the pure libraries PFTNLB and SPLLIB.

Save the runfile and exit to PRIMOS.

Reserve space for a defined symbol using relative references.

Save a runfile and exit to SEG.

Replace a module in the current runfile.

Load a file to a specified absolute segment.

Write a runfile to disk.

Reactivate warning message when common area is redefined as smaller.

Create a base area for indirect addressing.

Specify a segment for the stack and optionally load SEG's execution unit
RUNIT.

Protect a symbol from deletion from the load map.

Set minimum stack size.

5-3 Second Edition

5 SEG A N D SEG-LEVEL C O M M A N D S

SY MBOL Define a symbol without reserving space for it.

SZ Control the use of base areas in sector 0 of a procedure segment.

XPUNGE Delete symbols and base area information from the load map.

MODIFY Processor Subcommands

The modification subsystem modifies existing runfiles. With it you can change runfile
parameters. Rust color indicates minimum valid abbreviations. These commands are discussed
more fully in Chapter 7.

NE W Copy segments '4000 and above of a runfile.

PATCH Write a patch to disk.

RETURN Save runfile and exit to SEG level.

SK Specify stack size and location and extension stack segments.

START Change the starting address of a program.

WRITE Rewrite to disk all segments above '4000.

OPERANDS FOR ALL COMMANDS

Files and directory names may be specified by pathnames. All numerical values must be octal.
The following conventions are followed for parameters.

addr Address within a segment

segno Segment number

psegno Procedure segment number

lsegno Linkage segment number

THE SEG COMMAND

• SEG
pathname
-LOAD
[pathname] 1/1

Invokes the SEG utility for a number of purposes, according to the format, as explained below.
Pathname may be as long as 160 characters. The internal name of the ECB, however, should
not exceed eight characters — any more will be truncated. See the Glossary for definition of
the ECB name in your programming language.

DOC3524-192 5-4

SEG A N D SEG-LEVEL C O M M A N D S 5

SEG has five formats:

SEG -LOAD Causes SEG to display the $ prompt, allowing the user to load, modify,
or execute a SEG runfile. An example follows. It loads a binary file
called CYPHER.BIN from a UFD named SECRET with a password of
CRYPTO, and creates a runfile called CYPHER.SEG.

OK, SEG -LOAD
$ LOAD 'SECRET CRYPTOCYPHER'

SEG

SEG pathname

SEG pathname 1/1

SEG 1/1

Causes SEG to display the # prompt, allowing the user to modify, load,
or execute a SEG runfile.

Loads the runfile into memory and starts execution. Pathname must be
the filename or pathname of a SEG runfile.

Restores the SEG runfile pathname to memory and tranfers control to
the VPSD debugging utility. Control may be returned to SEG by the
QUIT command.

Allows the current runfile to be examined and modified with the VPSD
debugging utility. Control may be returned to SEG by the QUIT
command, but the runfile cannot be executed at the SEG command
level.

SEG employs two subprocessors, VLOAD or LOAD and MODIFY, which accept further
commands. The subprocessors use the $ prompt character.

If an error occurs during an operation, SEG prints an error message, then the prompt character.
Error messages and suggested handling techniques are discussed in Chapter 8. When a system
error (FILE IN USE, ILLEGAL NAME, INSUFFICIENT ACCESS RIGHTS, etc.) is encountered,
SEG prints the system error and returns the prompt symbol if the error is not fatal.

SEG remains in control until a QUIT command returns control to PRIMOS, or an EXECUTE
command starts execution of the loaded program.

SEG-LEVEL COMMANDS

• DELETE [pathname]

Deletes a saved SEG runfile; if pathname is omitted, deletes the current runfile.

• HELP

Displays a list of commands available.

5-5 Second Edition

5 SEG A N D SEG-LEVEL C O M M A N D S

• LOADER
pathname

[pathname]

Same as VLOAD below.

• MAP
pathname-1

[pathname-2] [map-option]

Prints a load map of a runfile (pathname-1) or of the current runfile (*), either at the user's
terminal or to a file (pathname-2). If both pathnames are omitted, the current runfile map is
printed at the user's terminal.

Map Options

0

1

2

3

4

5

6

7

10

11

Load Map Information

Full map (default).

Segment use map only (map sections 1 and 2).

Segment use and base areas (map sections 1, 2, and 3).

Undefined symbols sorted by ascending address (map section 7).

Full map (identical to 0).

Reserved.

Undefined symbols, sorted alphabetically (map section 7).

Full map, sorted alphabetically.

Symbols sorted by ascending address.

Symbols sorted alphabetically.

The full SEG load map consists of seven sections. The selected map option above determines
which sections are present; in small loads some, particularly section 3, may be absent. Some
examples are:

MA TEST 3

MA TEST ATLAS 7

MA 1

MA * ATLAS

Print unsatisfied references in SEG runfile TEST.SEG at the
terminal.

Write a full map of SEG runfile TEST.SEG sorted alphabetically
into file ATLAS.

Print a segment use map of the current runfile at the terminal.

Write a full map of the current runfile into file ATLAS.

How to read a load map is explained in Chapter 3.

DOC3524-192 5-6

SEG A N D SEG-LEVEL C O M M A N D S 5

• MODIFY [pathname]

Invokes the MODIFY processor to create a new runfile or modify an existing runfile. If
pathname is omitted, the current runfile is used.

This processor accepts a number of subcommands that are listed in Chapter 7. Modifications
permitted are:

• Change starting ECB address.

Change stack size and/or location and add stack extension segment.

Save patched runfile to the same or to a new runfile.

Create a new copy of a shared procedure template file, or of any segments numbered
'4000 and above.

• PARAMS [pathname]

Displays the parameters of a SEG runfile. If pathname is omitted, parameters are displayed for
the current SEG runfile.

The parameters are the starting address (ECB address of main program), stack location, contents
of the A, B, and X registers, and the keys. The ECB is explained in the glossary. Keys and their
values are explained in the Assembly Language Programmer's Guide.

Both the starting address and the stack location are given in two fields: the first is the segment
number, the second is the location within the segment. All information is displayed in octal.

In the example below, the starting address is at location '2 in segment '4002; the stack is at
location '1066 in segment '4001. The contents of the A, B, and X registers are 0. The keys value
is '14000, indicating single-precision arithmetic and 64V addressing mode.

OK, SEG
PA TEST1
START(2), STACK(2), A, B, X, KEYS
00a002 000002 001001 001066 000000 000000 000000 014000

• PSD

Invokes VPSD debugging utility. See the Assembly Language Programmer's Guide.

• QUIT

Saves the runfile, returns to PRIMOS command level, and closes all open files.

• RESTORE [pathname]

Restores pathname to memory. If pathname is omitted, the current runfile is used.

5-7 Second Edition

5 SEG A N D SEG-LEVEL C O M M A N D S

This command allows restoration of a runfile to memory for examination with VPSD, or for
patching. After patching, the patched version in memory may be executed; SEG does not
restore a fresh copy to memory if a new filename has not been entered since the last RESTORE.

> RESUME [pathname] [1/1]

Restores pathname to memory and begins execution. If pathname is omitted, the current
runfile is used. If the program is already in memory (the current runfile), then SEG does not
bring a new copy from disk.

The directive 1/1 transfers control to the VPSD debugging utility described in the Assembly
Language Programmer's Guide.

• SAVE [pathname]

Synonym for MODIFY.

> SH ARE [pathname]

Prepares a segmented runfile for sharing. SHARE copies portions of pathname corresponding
to segments below '4001 into an unsegmented (SAM) runfile. If pathname is omitted, the
current runfile is copied. (See Chapter 4 for more information.)

After SHARE is entered, SEG asks for a file-id. The user may enter any characters, starting with
an alphabetic character or one of the symbols # $. & * / . I n revisions before 19.2, the file-id
may be only two characters, and may not begin with a space. Thus, the entry may not be
indented in a CPL file or in any other case. Starting with Rev. 19.2, the name entered may be as
long as 28 characters. Any more will be truncated.

SEG will then rewrite records from the segmented runfile to new, unsegmented files with the
names CCnnnn and CC4000, where CC are the characters supplied by the user and nnnn is a
segment number in the '2xxx range (if any exist in the original file). If files with these names
already exist, they will be overlaid.

The new file or files are now ready either to be run with the PRIMOS command RESUME or, if
below '4000, to be shared by the System Administrator.

• SI NGLE [pathname] segno

Creates an unsegmented (SAM) runfile for the segment segno of file pathname. If pathname is
omitted, the current runfile is used. SINGLE is similar to SHARE, but can convert a file
assigned to any segment number.

SINGLE may be used to create unsegmented (SAM) runfiles for segments '4001 and higher.
Like SHARE, this command asks for file-id. Thus, the command SINGLE 4031 copies segment
4031 of the current runfile to a SAM file named xx4031.

SINGLE must be followed by a segment number. If none is given, a new file is not created,
although no error message is displayed. If no pathname is entered after the command, SEG

DOC3524-192 5-8

SEG A N D SEG-LEVEL C O M M A N D S 5

prompts ENTER SAVE FILE NAME. Enter the pathname of the segmented file you want to
convert. SEG asks for a file-id, which must follow the rules for the file-id requested by SHARE
above.

• TIME [pathname]

Prints time and date of last pathname modification. If pathname is omitted the current runfile
is used. This command allows the user to know when the runfile was last modified by anyone.

Example:

OK, SEG
TI TEST
107-2-83 14:13:14
I Q

• VERSION

Displays SEG version number.

\ pathname /
• VLOAD

/ * [pathname]

Defines the runfile name. The first format invokes the virtual loader to create a new runfile.
The second format allows appending to an existing runfile. If pathname is omitted, SEG uses
the current runfile; if there is no current runfile, SEG requests a name.

The asterisk permits addition to or replacement of a module in an existing runfile. This format
facilitates the loading of program modules to shared procedure templates. If the asterisk is
omitted, the runfile is initialized.

The VLOAD or LOADER command performs three functions:

• Defines (explicitly or implicitly) the name of the SEG runfile. This is unnecessary if
the command line was SEG -LOAD. Prime's convention is to use the suffix .SEG with
a SEG runfile name (e.g., MYPROG.SEG). Since this convention allows use of the
other filename conventions explained in Chapter 2, the user should follow this
convention in Rev. 18 and higher unless there are compelling reasons to do otherwise.

• Specifies whether a new file is to be written or an existing file is to be added to.

• Transfers operations to the loader. The loader prints the prompt $ to differentiate
itself from SEG-level commands.

The loader has a large number of subcommands that are described in Chapter 6.

5-9 Second Edition

6
THE VLOAD OR

LOADER PROCESSOR

This chapter describes the subcommands accepted by SEG's VLOAD (LOADER) processor in
response to the $ prompt character.

t> ATTACH [ufd-name] [password] [ldisk] [key]

Attaches to a directory. Since SEG supports pathnames in all cases, this command is obsolete
with Rev. 17 and higher.

ufd-name Name of the target UFD; the default is the home UFD.

password Password of target UFD if it is protected by a password.

ldisk Key of logical disk to search for the specified UFD:

0 (or omitted) Search logical disk 0.

100000 Search all logical disks.

177777 Search logical disk on which current
directory is located.

6-1 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

key Key for attach/set information:

0 Attach to UFD; do not set it as home.

1 Attach to UFD; set home to new current
UFD.

2 Attach to sub-UFD in current UFD; do
not set home to new current UFD.

3 Attach to sub-UFD in current UFD; set
home to new current UFD.

• AUTOMATIC base-area-size

This subcommand is intended to allow more base area space for large procedures. Base areas are
the areas of memory reserved for indirect address resolution. Base-area-size is the size of each
base area. The default is zero and turns this feature off.

This command causes procedures greater than '341 16-bit half words in length to have a base
area allocated before and after the procedure code. If the sector-zero base area is filled,
AUTOMATIC causes the loader to attempt to place base areas where needed, that is, surround­
ing blocks of procedure. The base areas are placed, not only around blocks as they are loaded,
but also between modules within a block (such as a library file or a user file containing more
than one procedure). Thus, AUTOMATIC may provide base areas in more convenient places
than the user can plan with SETBASE. The disadvantage of the AUTOMATIC subcommand is
that it may reserve an unnecessarily large amount of storage as unused base area.

• A/SYMBOL sname [segtype] segno [size]

Defines a symbol in memory and reserves space for it using absolute segment numbers.

sname Name of the symbol.

segtype Type of segment, either DATA or PROCEDURE; if it is omitted, a
data segment is assumed. If the segment does not yet exist, it will
be created.

segno Absolute octal segment number.

size Number of 16-bit locations (octal) to be reserved for the symbol; if
it is omitted, 0 is assumed.

This form of the SYMBOL command is for use only when addressing specific segments. The
prefixes S/ or P/ (or D/ if appropriate) should be used with any remaining load commands. A/
SYMBOL is particularly valuable for controlling the placement or size of common blocks, and
for reserving space in shared segments. Both techniques are illustrated in Chapter 4. See also
SYMBOL and R/SYMBOL below.

DOC3524-192 6-2

THE VLOAD OR LOADER PROCESSOR 6

Cautions

1. Be sure that the number of locations reserved for the symbol is adequate for its
intended use.

2. If there is not enough room in the segment or if the segment is not of the correct
segtype, the next segment will be used.

3. You cannot use this command to satisfy previously identified unresolved
references.

In the following examples, TOP+1 is the next available location in a given segment.

A/SY KELVIN 4002 1000

A/SY KELVIN PR 4001 1000

A/SY KELVIN DA 400 1 1000

Place symbol KELVIN at the current TOP+1 in data
segment '4002 reserving '1000 locations for it.

Place symbol KELVIN at current TOP + 1 in procedure
segment '4001 reserving '1000 locations for it. This is a
way of placing a common block in a procedure
segment.

Place symbol KELVIN at current TOP+1 in data seg­
ment '4001, reserving '1000 locations for it. If the seg­
ment specified did not exist, it would be created and the
address of KELVIN would be 0 (a special case of
TOP+1).

• COMMON
ABS

REL
segno

This command allows the user to specify the segment into which common blocks are loaded. It
relocates common blocks using absolute or relative segment numbers. Segno is the segment
number into which the common blocks are to be loaded. It is either an absolute or a relative
octal segment number, depending on whether ABS or REL is specified. The default is REL.

Use the COMMON command for loading initialized common blocks that already exist in the
system. Use SYMBOL for uninitialized common blocks.

If relative mode is specified, SEG first tries to use segment '4001, then, if MIX OFF is in effect,
other data segments. Even if linkage has been loaded in segment '4000 with SPLIT and MIX,
SEG puts common blocks in segment '4001 unless specifically directed to do otherwise. If
segment '4001 has no room, SEG tries to load common blocks in each successively numbered
segment not assigned to procedure.

When SEG's default segment assignments are used, the COMMON RELATIVE command
causes SEG to load the common blocks into a different segment than that used for the link
frames. This often decreases the size of the runfile that has to be restored, because only the first
page or so of each segment need be used. The user may also desire to specify that certain

6-3 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

common blocks be assigned in the same segment with specific link frames. (See SYMBOL, A/
SYMBOL, R/SYMBOL.) For example:

CO REL 1 Declares one of SEG's default segments as relative
LO MYPROG 0 2 3 data segment 1 and uses it for loading COMMON. It

assures that the link frame (data portion) is loaded in a
different segment from the common blocks.

CO ABS reserves space only for those blocks that have been initialized. Since uninitialized
common blocks do not take up space, but are simply entered into the symbol table, this enables
SEG to optimize its buffer allocation, thereby decreasing both the size of the runfile and the
time to restore it. For example:

CO ABS 4015 Causes the loader to load all common blocks into seg­
ment '4015 so long as they will fit, then into segment
'4016, '4017, etc.

When loading to specific segments via the S/ or P/ prefix to LOAD (or D/ if appropriate), use
the COMMON ABS command to assign common blocks.

• D /

Continues a load using parameters of the previous load command. The D/ modifier is
especially useful for large loads and in command files. Use of D/ decreases typing and
minimizes errors; the creation of command files is made simpler.

D/ may be combined with F/ as either D/F/ or F /D/ . It may not be combined with P or S,
which by definition modify parameters.

An example will help illustrate use of D/:

S/LO JUNK 0 4002 4004 Load JUNK.BIN in procedure segment '4002 and data
segment '4004.

D/F/LO TRASH Forceload all of TRASH.BIN in the same segments as
above.

D / F / L I VKDALB Forceload all of VKDALB in the same segments as
above.

D/LI Load system libraries in the same segments as above.

In all the above cases, procedures are loaded into segment '4002 and link frames into segment
'4004, unless either one overflows, in which case loading continues in the next segment.

The next example causes MAIN.BIN and the system libraries to be loaded in the same pair of
procedure and linkage segments. SUB1.BIN and B_SUB2 will be loaded into one pair also, but
this will be a different pair from those used for MAIN and the system libraries. This might be
useful for debugging.

DOC3524-192 6-4

THE VLOAD OR LOADER PROCESSOR 6

LO MAIN
LO SUB1 0 1 1
D/LO B_SUB2
LI

Note

The D/ prefix does not cause duplication of a preceding P/ in a load.

• EXECUTE

Saves and executes a program.

VLOAD first saves the program, if necessary, and then executes it. After execution, control
returns directly to PRIMOS.

• F/ [pathname] [addr psegno lsegno]

Forces loading of all routines in an object file. Otherwise, when library files are loaded, often
only those modules that have been called by a previous program are loaded. The command is
useful in preparing templates when the calls in the main program are not yet known. See
Chapter 4 for a discussion of templates and of forced loading of library files.

The F/ prefix should be used in any instance where a module must be part of a program, but is
not referenced in such a way that it appears in the load map.

pathname Object file to be forceloaded. It is required with some commands
and must be omitted with others:

Load Command Pathname Requirement

LOAD or RL Required.

PL or IL Omitted.

LIBRARY Optional (if it is omitted the system librar­
ies are force-loaded).

addr

psegno

Starting address in psegno for the procedure part of the binary file.
If 0 is specified, the current program TOP (as shown in the load
map) is used. This is also called the current load point.

Absolute or relative number of procedure segment, depending on
whether or not an absolute prefix (S/, P / , or D/ if appropriate) is
included with the subcommand.

6-5 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

Isegno Absolute or relative number of segment for link frames and data,
depending on whether or not an absolute prefix (S/, P / , or D/ if
appropriate) is included with the command.

If psegno and/or Isegno are 0, SEG's default segments starting with '4001 and '4002 are used. If
S/ (absolute segment loading) or P/ (load to page boundary) is being used, F/ must also use
absolute segment numbers. D/ may also require absolute numbers if it duplicates a P / or S/
load.

In a simple forced load both the procedure segment number and the linkage segment number
are default assignment numbers. The defaults resulting if parameters are omitted are the same
as for the commands without the F/ prefix. For example:

F / L I Forceload all of each system library into default
segments.

Forced loading is very useful in building a shared template or creating a partial load. For
example:

F/LO THING Forceload all modules in THING.BIN into default
segments.

L I Forceload all the system libraries into default segments.

F/ may be combined with P / a s F / P / o r P / F / to force loading of all routines in an object file to a
page boundary. For example:

F/P/LO JUNK 0 4002 4004 Forces loading of the procedure portions of JUNK.BIN
on page boundaries of segment '4002 and data/link
frame portions of JUNK.BIN on page boundaries of
segment '4004.

F/ may be combined with S/ as F/S or S/F/ to force loading of all routines in an object file to
specific segments. This format is useful for creating shared templates. For example:

F / S / P L 4000 2000 4002 Forces loading of all modules in the libraries PFTNLB
and SPLLIB into segment '2000 beginning at location
'4000, with the linkage area in segment '4002.

D/ may also be combined with F/ as D/F or F/D to minimize typing errors.

^ IL[addr psegno Isegno]

Loads the impure FORTRAN library IFTNLB. This subcommand is an abbreviation for LI
IFTNLB.

addr Starting address in psegno for the procedure part of the binary file.
If 0 is specified, the current program TOP is used.

psegno Relative or absolute number of procedure segment, depending on
whether an absolute prefix (S/, P / , or D/ if appropriate) is used.

Isegno Relative or absolute number of segment for link frames and data,
depending on whether an absolute prefix is used.

If psegno and /or Isegno are 0, SEG's default segments starting with '4001 and '4002 are used.

DOC3524-192 6-6

THE VLOAD OR LOADER PROCESSOR 6

Use IL when creating shared procedures to load the impure part of the system libraries into the
non-shared segment. Normally, the compound commands S/, F / , and P/ are used with IL to
control library segment assignment.

• INITIALIZE

Initializes and restarts the VLOAD (LOADER) subprocessor. This subcommand is used to abort
a bad load or to begin a new load after a SAVE.

• LIBRARY [filename] [addr psegno lsegno]

This command is an abbreviation for LOAD LIB>filename. It loads a library file.

filename Name of the library file to be loaded; if it is omitted, the system
library files PFTNLB, IFTNLB, and SPLLIB are loaded.

addr Starting address in psegno for the procedure part of the binary file.
If 0 is specified, the current program TOP is used.

psegno Relative or absolute number of procedure segment, depending on
whether an absolute prefix (S/, P / , or D/ if appropriate) is used.

lsegno Relative or absolute number of segment for link frames and data,
depending on whether an absolute prefix is used.

LIBRARY can be combined with D/ , F/ , P / , and S/. The only difference between LIBRARY
and LOAD is that the former causes the loader to look for a file in the UFD named LIB.

• LOAD [pathname] [addr psegno lsegno]

Loads and links an object file into a runfile.

pathname Name of the object module.

addr Starting address in psegno for the procedure part of the object
module. If 0 is specified, the current program TOP is used.

psegno Relative or absolute number of procedure segment, depending on
whether an absolute prefix (S/, P / , or D/ if appropriate) is used.

lsegno Relative or absolute number of segment for link frames and data,
depending on whether an absolute prefix is used.

This command links the object module to the other modules in the current runfile. If psegno
and/or lsegno are 0, SEG's default segments starting with '4001 and '4002 are used.

Lsegno does not select a segment for common blocks; the COMMON or SYMBOL commands
must be used if common blocks are to be loaded into specific or absolute segments.

LOAD can be combined with D/ , F/ , P / , and S/.

6-7 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

• MAp [pathname] [map-option]

Creates a load map of the current runfile.

pathname Name of the file into which the load map is to be written. If
pathname is omitted, the map is displayed at the user's terminal.

map-option Type of load map to be generated; options are the same as in SEG's
MAP command. See MAP in Chapter 3 or Chapter 5.

MAP outputs the specified map either to the user's terminal or to a file. QUIT, EXECUTE, and
RETURN cause the map file, if any, to be truncated. Only one map file can be generated in each
session of VLOAD. When a map file is specified it is opened on PRIMOS unit 13. (File units are
explained in the Subroutines Reference Guide.) That file remains open until the load session
is complete, and any additional MAP commands specifying output to a file will use the one
already opened. When the user exits from the loader (via EX, QU, or RE) the map file is closed.
If the user has a file already open on PRIMOS unit 13 when SEG's loader is invoked this open
file will be used for the map. Under these circumstances the loader will not close the file. In
this respect, the MAP subcommand of VLOAD differs from the MAP command of SEG. If
multiple maps are to go to the file, any nonnumeric character may be used for pathname after
the first reference.

The load map options are identical to those generated by SEG's MAP command and are
discussed in detail in Chapters 3 and 5.

• Mix
ON •

OFF

Allows loading of linkage and common blocks in procedure segments so that the RUNIT files
described in Chapter 4 may be created. When MIX has been invoked all segments will be
created as procedure segments.

MIX or MIX ON invokes the MIX feature. MIX OFF turns the feature off and resumes regular
loading into separate data and procedure segments. The feature is not reset by the INITIALIZE
command. In this way users may elect to save a copy of SEG with MIX turned on and make this
the default mode of loading. In general, loading under the MIX option reduces the number of
segments required for a program, but debugging such programs may be more difficult. If there
are common blocks in the runfile, however, the file may turn out bigger unless special
placement is used. See Chapter 4 for examples.

• MV [start-symbol move-block dest-segno]

Moves portions of the load file. This command is intended primarily to facilitate the creation
of shared libraries by Prime and not as a user command. Code or data moved by the MV
command cannot be executed or used in the destination location as the links to the moved area
still reflect the original addresses.

Start-symbol The name of a symbol indicating the start of the move. An example
is given with the START prompt below. Information will be
moved from start-symbol to the current HIGH in the segment.

DOC3524-192 6-8

THE VLOAD OR LOADER PROCESSOR 6

Move-block

Dest-segno

A previously defined symbol corresponding to a five-address
block into which information concerning the move will be placed.
Move-block is optional, but if it is specified, the format after the
move will be:

Locations 1,2 Address to which move was made.

Locations 3,4 Address from which move was made.

Location 5 Number of 16-bit locations moved.

Move-block may thus be used to restore the moved information to
its original place.

The segment to which the information is to be moved. It may be
either a procedure or a data segment. If there is not enough room
in the segment, the next segment with sufficient room will be
used.

MV without parameters causes prompts for further input:

Prompt

START:

Response

The response to START may be either a defined symbol from the
symbol table or the segment and address of the source location. For
example:

START; FOOBAR

END:

or

START: 4001 1232

END may also be specified as a symbol or numer i c value. If END is
specified symbolically it must be in the same segment as that
defined for the start of the move. If END is defined numerically it
must be one number representing the first location which is not to
be moved in the segment. For example:

END: FOOEND

or

END 2000

In either case locations up to but not including the end location will
be moved.

A value of 0 or no value (CR only) will cause MV to move locations
up to and including the current HIGH in the segment specified by
START.

6-9 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

DEST. SEGMENT: A segment number into which the block of information is to be
moved. It may be either a procedure or a data segment. If there is
not enough room in the segment, the next segment with enough
room will be used.

IP VECTOR: Corresponds to move-block above. It is also optional.

• NSCW

Starting at Rev. 19.2, suppresses the warning message when common area is redefined as
smaller.

• OPERATOR option

Gives or removes system privileges. The actual implementation of OPERATOR may change
from revision to revision. Consequently, the command is not considered to be a supported
function of SEG.

Option Function

0 Reinstate restrictions.

1 Relax restrictions.

This subcommand allows creators of specialized software to refer to locations in other seg­
ments using only the address in the segment. This is dangerous, and is not normally allowed
by SEG's loader. The OPERATOR command is used to relax this restriction when necessary.

This command must be used before any errors are generated. It is not cancelled by the
INITIALIZE command.

• P/ < LIBRARY ,> [pathname] option [psegno] [lsegno]

Loads an object file on a page boundary. The command was originally intended to load
operating system procedures and their linkage areas on page boundaries to minimize wired
memory. Users may also find the command helps to save search time by placing frequently-
referenced items at the start of a page.

DOC3524-192 6-10

THE VLOAD OR LOADER PROCESSOR 6

pathname

option

psegno

lsegno

Object file to be loaded. It is required with some load commands
and must be omitted with others:

Load Command

LOAD or RL

PL or IL

LIBRARY

Pathname Requirement

Required.

Omitted.

Optional (if it is omitted, the system
libraries are loaded).

Determines what shall be loaded:

PR

DA

(omitted)

Load just the procedure on a page
boundary.

Load just the link frames on a page
boundary.

Load both procedure and link frames
on a page boundary.

Absolute octal number of procedure segment.

Absolute octal number of segment for link frames and data.

Default segments are those of the current procedure and/or link frame pointers; if necessary,
SEG creates new segments. If either PR or DA is specified for option, loading in the default
segment begins at its current load point. Only the first routine in the file is placed on a page
boundary.

Note

A subsequent load with the D/ prefix will not place its operand on a page boundary.

P/ may be combined with F/ to force loading on a page boundary as F/P/ or P /F / .

The P/ prefix incorporates the features of S/; the segments supplied by the user are assumed to
be specific (absolute) segments.

For example:

P/LO JUNK 4002 4004

P/LI PFTNLB PR

P/LO MUMBLE DA

Place both procedure and data of JUNK.BIN on a page
boundary, the first in segment '4002 and the second in
'4004.

Place procedure portion of the first loaded library rou­
tine on a page boundary.

Place link frame of first loaded routine of MUM­
BLE.BIN on a page boundary.

6-11 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

• PL [addr psegno lsegno]

Loads the pure libraries PFTNLB and SPLLIB. This is an abbreviation for LI PFTNLB and LI
SPLLIB. Use PL when creating shared procedures to load the pure part of the system libraries
into reentrant procedure segments (those numbered below '4000).

addr Starting address in psegno for the procedure part of the binary file.
If 0 is specified, the current program TOP is used.

psegno Relative or absolute number of segment into which procedure is to
be loaded, depending on whether an absolute prefix (S/, P / , or D/
if appropriate) is used.

lsegno Relative or absolute number of segment into which link frames are
to be loaded, depending on whether an absolute prefix is used.

If psegno and/or lsegno are 0, SEG's default segments starting with '4001 and '4002 are used.
Normally, the compound commands S/, F/ , and P/ are used with PL to control library segment
assignment.

• QUIT

Performs a SAVE and returns to PRIMOS command level. The user remains attached to the last
UFD specified in a PRIMOS ATTACH command, or to the UFD specified as home in VLOAD's
ATTACH command.

• R/SYMBOL sname [segtype] segno [size]

Defines a symbol, sname, and reserves space in a relative segment for it using relative segment
numbers.

sname Name of the symbol.

segtype Type of segment, either DATA or PROCEDURE; if omitted, a data
segment is assumed.

segno Relative segment reference number. If 0 is specified, the first
available segment of the current type is used.

size Number of locations to be reserved for the symbol. If omitted, it is
assumed to be 0.

This form of the SYMBOL command is especially useful in controlling the placement and size
of named common blocks during a load. If the segment specified does not exist, or does not
contain enough room, a new segment is created to locate the symbol. Check to be sure that the
number of locations reserved for the symbol is sufficient. See SYMBOL below.

This command may not be used to satisfy unsatisfied references already existing in the load.

DOC3524-192 6-12

T H E V L O A D O R L O A D E R P R O C E S S O R 6

In the fol lowing examples , T O P + 1 is the next available location in a g iven segment .

R/SY COUSIN 0 1000

R/SY COUSIN PR 0 1000

R/SY COUSIN DA 1 0

Places symbol COUSIN at the cur ren t TOP + 1 in a data
segment w i th no reference n u m b e r , reserv ing '1000 loca­
t ions for it.

Places symbol COUSIN at cu r ren t TOP + 1 in a procedure
segment wi th n o reference n u m b e r , reserving '1000 loca­
tions for it. This is a way of p lac ing a c o m m o n block in a
procedure segment .

Places symbol COUSIN at cur ren t TOP + 1 in a data seg­
m e n t wi th reference n u m b e r 1, reserv ing 0 locations for it.
If a segment w i t h reference n u m b e r 1 does no t exist, it is
created and the address of COUSIN is 0 (a special case of
TOP + 1).

• RETURN

Performs a SAVE and re tu rns to SEG command level.

• RL pathname [addr psegno lsegno]

Replaces b inary modu les in the cur ren t runfi le. RL replaces a rou t ine or rou t ines in a SEG
runfile, mak ing it possible to replace a defective subrou t ine w i t h o u t h a v i n g to rebui ld the
runfile completely .

p a t h n a m e N a m e of the modu le to be replaced.

addr Star t ing address in psegno for the p rocedure par t of the b inary
modu le . If 0 is specified, the cur ren t p rog ram TOP is used.

psegno Absolute or relative n u m b e r of p rocedure segment , d e p e n d i n g on
w h e t h e r or not an absolute prefix (S / , P / , or D / if appropr ia te) is
used w i t h RL.

lsegno Absolute or relative n u m b e r of s egmen t for l ink frames and data,
d e p e n d i n g on w h e t h e r or no t an absolute prefix (S / , P / , or D / if
appropr ia te) is used.

If psegno and l segno are omi t ted , SEG loads the file in the first default p rocedure and data
segments w i t h e n o u g h room.

The n e w modu le logically and functionally replaces the old m o d u l e of the same n a m e by
pa tch ing the en t ry poin t . The n e w modu le need no t be the same l eng th as the old, since it is
not physical ly re loaded on top of the old module ; just the subrou t ine en t ry po in ts are patched.
However , since the old m o d u l e still occupies space in the runf i le , overuse of the RL command
may significantly increase runfi le size as wel l as restorat ion a n d execut ion t ime.

The ent ry po in ts in the rep lacement modu le mus t inc lude all t he en t ry poin ts that were
defined in the old modu le . In part icular , a n e w ECB must be supp l ied for each old ECB. N e w
common block names may be added in the rep lacement m o d u l e , bu t redef ini t ion of old
common blocks is not pe rmi t t ed .

6-13 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

If a binary module contains more than one procedure, all of the procedures in that module will
be replaced (or be loaded, in the case of the new module). The RL command causes the loader
to continue loading procedures from a module even after a LOAD COMPLETE signal, in case
new unresolved references are introduced.

To use an existing runfile for reloading, use the VLOAD * command. If the runfile contains no
segments below '4000, use MODIFY's NEW subcommand to make a copy of the runfile, since a
mistake could destroy its integrity.

When reloading a module, remember that SEG's loader has no record of whether the last load
was to a specific segment or not. Therefore, appropriate load parameters must be supplied for at
least the first module to be replaced.

FORTRAN or Pascal modules with internal functions may cause trouble, since these functions
have no ECB name.

In Pascal and PL1G, RL does not change the initialization values of common blocks.

Examples are:

RL B_MODULE Place the routines contained in B_MODULE in SEG's
default segments and logically replace the old routines
with the new one.

S/RL FOO 0 4002 4004 Use the routine in FOO.BIN to replace a loaded routine
of the same name using specific segments.

D/RL MUMBLE Use the routine in MUMBLE.BIN to replace another
routine using the parameters for FOO above.

Another example is given in Chapter 4.

RL can be combined with D/ , F/ , P / , and S/.

• S/ < LIBRARY > [pathname] addr psegno lsegno

Loads an object file to specified absolute segments.

pathname The object file to be loaded. It is required after some combinations
and must be omitted after others:

DOC3524-192 6-14

THE VLOAD OR LOADER PROCESSOR 6

Load Command

LOAD or RL

PL or IL

LIBRARY

Pathname Requirement
Required.

Omitted.

Optional (if it is omitted, PFTNLB, SP-
LLIB, and IFTNLB are loaded).

addr

psegno

lsegno

Starting load address (octal) in the procedure segment. If 0 is
specified, loading starts at the current pointer position (TOP).

Absolute octal number of procedure segment.

Absolute octal number of segment for link frames and data.

If the segments do not already exist, they will be created, and if the specified segment runs out
of room, the next segment will be used.

S/ does not place common blocks; this should be done prior to the load.

Examples are:

S/LO JUNK 0 4002 4004

S/IL 0 4000 4000

Load object file JUNK.BIN with its procedure begin­
ning at the current load pointer location in segment
'4002 and its link frame areas beginning at the current
load pointer in segment '4004. Assume that previously
any common blocks were located with a CO ABS
command.

Load the impure library IFTNLB into the split segment
'4000.

S/ may be combined with F/ as either S/F/ or F/S/ , but may not be combined with D/ . A
command including D/ may, however, follow an S/ command.

Caution
If an S/ is specified beginning at an address too high in the segment for the module's
size, the load will not extend to a new segment. It will wrap around to the beginning
of the same segment and destroy data there.

• SA V E I a - r e 8] [b - r e g] [x " r e g]

Saves the results of the load. A location for the stack is also assigned.

a-reg Value of A register (obsolete).

b-reg Value of B register (obsolete).

x-reg Value of X register (obsolete).

Writes all buffers to disk and sets stack pointers. SAVE is obsolete except that it sets the stack
location, which is useful before getting a map.

6-15 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

• s e w

Starting with Rev. 19.2, reactivates the warning message when common area is redefined as
smaller.

• SETBASE segno length

Creates a base area for address resolution linkages.

Segno is the segment in which the base area is to be located. It must be either a procedure
segment, or undefined. Length is the length of the base area to be created. The base area is
created at the current TOP of the segment. There is no facility in SEG for placing a base area at a
specific location in a segment. PMA contains a pseudo-operation, SETB, to create additional
base areas.

See Chapter 4 for a discussion of the differences between SETBASE and AUTOMATIC.

• SPLIT
segno addr
[addr] •
addr ssegno saddr [esegno]

Breaks a segment into procedure and data portions. If there are zero, one, three, or four
operands, the loader also loads RUNIT, RESUME, and a stack overflow handler. There are
three formats:

Format

Format 1

Format 2

Format 3

Operand

segno

addr

addr

addr

ssegno

saddr

esegno

Meaning

Absolute octal number of the segment to be split.

Octal location of the split within the segment (starting ad­
dress of the stack). Procedure will be loaded at addresses
below the split, and data (linkage and common blocks) will be
loaded above it.

Since segno is not supplied, segment '4000 is assumed and the
interlude program RUNIT will be loaded beginning at loca­
tion '1000. No data or code is allowed above the location
where RUNIT puts its stack ('150000 in Rev. 19). If addr is
omitted or 0, then RUNIT is loaded and the segment is not
split.

Octal address of split (beginning of stack) in segment '4000.
As in format 2 above, RUNIT is loaded. The location of the
stack, however, is defined by the following parameters.

Octal segment number of the stack.

Octal address within the segment for the split (start of the
stack).

Octal segment number for the extension stack.

DOC3524-192 6-16

THE VLOAD OR LOADER PROCESSOR 6

Chapter 4 explains how loading SEG's small invocation program, RUNIT, into '4000 eliminates
the need to have SEG occupy segment '4000. Further, RUNIT permits the program to be
invoked either from the user UFD (with RESUME) or from the UFD named CMDNC0 as a
PRIMOS-level command. Formats two and three allow execution with RESUME if all loaded
information is in segment '4000 and the runfile is reformatted with SEG's SHARE command.

The third format of SPLIT is recommended in order to avoid having RUNIT's default stack
placement overwrite data that you load into segment '4000. If you use Format 2, be aware that,
at different revisions of PRIMOS, the RUNIT stack may be placed differently. To find out
where the default placement of SEG's stack is in your software revision, look in the file
SEGSROSHARES.PMA on the master disk. Locations 1 and 2 after STACKS define the stack
location. See Appendix F. Such inconvenience is avoided if you use the third option of SPLIT
in order to place the stack where you want it. The stack may only be placed in procedure
segments.

Examples are:

SP 40 000 Creates a procedure area in segment '4000 below ad­
dress '40000 and a link area above '40000. RUNIT will
be loaded at '1000 in the procedure portion. The sym­
bol table will contain RUNIT and RESUME as defined
symbols and MAIN as an undefined symbol. (The use
of MAIN is explained in Chapter 4.) RESUME may be
used as the starting address if the user wishes to pre­
serve an existing stack. RUNIT is the normal starting
address.

SP 4 00 1 10000 Makes locations below '10000 in segment '4001 availa­
ble for procedures and the remainder of segment '4001
available for data.

The Source Level Debugger ignores the result of SPLIT and uses its own stack to run the
program.

• SS symbol-name

Saves symbol-name, preventing XPUNGE from deleting it. To protect multiple symbols, name
each by a separate SS command.

• STACK ssize

Sets the minimum stack size.
s s i z e Minimum required stack size (octal). An ssize of'177774 forces use

of an entire segment for the stack.

The location is not changed. To change stack location, use the SK command in the MODIFY
processor.

Example:

ST 10000 0 Requires at least '100000 free locations in the segment
used for the stack.

6-17 Second Edition

6 THE VLOAD OR LOADER PROCESSOR

(old-symbol-name)
• SYMBOL [new-symbol-name] \ segno [addr] } [octal-no]

Defines a symbol but does not reserve space for it.

new-symbol-name Symbol name. If it is omitted, blank (unlabeled) common is

assumed.

old-symbol-name Previously defined symbol to be replaced.

segno Absolute octal number of segment in which the symbol is to be
located.

addr Octal address of 16-bit location in the specified segment for the
symbol. If omitted, it is assumed to be zero.

* Store symbol at current load point or TOP of linkage segment. See
the chapter on load maps.

octal-no Constant offset in 16-bit locations. If it is preceded by a negative
sign, the value of the offset is negative.

The value assigned to new-symbol-name may be a previously defined symbol (old-symbol-
name), a location (segno addr) or the value of the load point (*). Constant offsets may be added
to the symbol value (octal-no) and may be negative. The offset may be an expression. Thus the
offset may be used to define a symbol as a location within a common block, as in the third
example below.

It is not necessary that the segment ever be defined by the loader because SYMBOL does not
actually assign a segment in SEG's segment table for the symbol-name, but only an entry in the
symbol table. Hence, the command is useful for defining uninitialized common blocks that
will not be restored to memory when a program is invoked; this will decrease restore time
prior to execution. SYMBOL defines an address for a symbol that already exists. The prefixes
A/ and R/ allocate space as well as defining the symbol. They may be used, for example, to
reserve space for large common blocks.

SYMBOL cannot be used to define a common block that will be initialized by a DATA
statement or BLOCK DATA subprogram in FORTRAN. Use the COMMON command for this
purpose. Symbol names defined by this command cannot be used to satisfy unsatisfied
references in a partial load.

Examples are:

SY CYMBAL 4 0 0 1 12 0 0 0 Locates symbol CYMBAL at segment '4001, location
'12000.

DOC3524-192 6-18

THE VLOAD OR LOADER PROCESSOR 6

SY 4 0 1 5 1000

SY NEWNAME AA 6

Defines blank common area as beginning in segment
'4015 at location '1000. Here the user has located a
blank common block above the other program proce­
dure and data segments so that overflow of blank com­
mon (indexes out of range) will not overwrite other
code. The user must determine which segments and
locations are to be used by examining SEG's load map.

Defines the new symbol NEWNAME as the sixth loca­
tion in common block AA in segment '4003. Thus, if
AA consists of four 32-bit items, NEWNAME references
the fourth item.

• SZ segno
YES

NO«

Controls the use of sector zero base areas in procedure segments.

Segno The segment whose sector zero base area is affected.

NO (Default) causes the given base area not to be used. An error is

YES

generated if a link is needed.

Allows the use of the sector zero base area again.

• XPUNGE dsymbols [dbase]

Expunges the defined symbols indicated by dsymbols from the symbol table and deletes base
area information indicated by dbase. Undefined symbols and symbols referenced in an SS
command cannot be removed. XPUNGE allows a program to call two or more routines by the
same name. This command is intended for use by the COBOL compiler in overlaying defined
symbols in different phases of its compilation.

dsymbols Action

0 Delete all defined symbols, including common blocks.

1 Delete only entry points, leaving common blocks.

dbase Action

0 Delete all base area information. (Default)

1 Retain only sector zero information.

2 Retain all base area information.

6-19 Second Edition

7
THE MODIFY

PROCESSOR

The following commands are accepted by SEG's MODIFY processor, in response to the $
prompt.

• NEW pathname

Writes a partial copy of the current SEG runfile to disk. NEW duplicates all segments greater
than or equal to '4000 under the specified new pathname. The full map and all references to
segments below '4000 are preserved. NEW may be used to create a template for further
additions (Chapter 4) or to save a patched version of a runfile already in memory. Pathname
must not already exist.

After NEW is used, all subsequent commands with no pathname specified will use the one
specified with NEW as the current runfile.

Caution

If there is a segment '4035 in the runfile, it will overwrite the symbol table and crash
SEG.

If NEW is to be used, do not use the formats of SPLIT that load RUNIT. See Chapter 6.

7-1 Second Edition

7 THE MODIFY PROCESSOR

• PA TCH segno baddr taddr

Writes a patch to disk.

segno Absolute octal number of the patched segment.

baddr Lowest octal location of the patch.

taddr Highest octal location of the patch.

PATCH writes specified portions of segments '4001 and above in the current runfile to the
disk. If the patch spans areas that were not previously on disk, all pointers are corrected so that
the patch becomes a permanent part of the runfile. For example:

PA 4001 3000 3777

writes to disk locations '3000 to '3777 in segment '4001, extending the in-use range of the
segment if needed.

• R E T U R N

Saves the runfile and returns to SEG command level.

ssize
segno addr
ssize 0 esegno
segno addr esegno

Specifies stack size, location, and an extension stack segment.

Format Operand
Format 1 ssize

Format 2 segno

addr

Meaning
Minimum required stack size in octal 16-bit elements. If 0 is
specified, the default value of '6000 is used. If ssize is '177774,
an entire segment is reserved for the stack.

Absolute octal segment number for the stack. There must be at
least '20 16-bit addresses available in this segment.

Octal starting address for the stack in the specified segment.
Addr must be at least 4, as locations 0 to 3 must be reserved for
use by stack hardware. An addr of at least '10 is
recommended.

DOC3524-192 7-2

THE MODIFY PROCESSOR 7

Format 3 ssize

esegno

Format 4 segno

addr

esegno

Examples:

SK 60000

SK 4001 122000

Minimum size for the stack.

Absolute octal number of the first segment available for the
extension stack.

Absolute octal number of the segment in which the stack
begins.

Octal starting location of the stack in the starting segment.

Absolute octal number of the first segment available for the
extension stack. SEG will allocate additional segments se­
quentially as needed. If an allocated segment is not needed for
an extension, it is not included in the runfile.

Set up a stack of '60000 octal 16-bit addresses.

Locate the start of the stack in segment '4001 at address
'122000.

^ ST ART segno addr

Changes the ECB used to start execution (see Glossary).

segno Absolute octal segment number.

addr New octal address in the segment for the ECB to be start of execution.

One possible application of this command is the creation of template programs with multiple
entry points (programs alike except for the start of execution location). If *START is reset to
'7777 '000000 as part of template creation, SEG's loader will reset *START to the starting
address of the program using the template.

This command is also used to change the start point to RESUME so that a current stack is used.

• W R I T E

Rewrites to disk all segments of the current runfile above segment '4000.

This command saves the runfile on disk without changing any of the segment ranges previous­
ly declared. It assures that all patches are written to the disk and that no segment ranges have
been changed.

If NEW is given before WRITE, the segments are written into a new runfile; otherwise the
current runfile name is used.

7-3 Second Edition

8
ERROR MESSAGES

OVERVIEW

Use of SEG can produce error messages from several sources:

• From SEG's own routines

• From PRIMOS

• From the subroutine ERRPR$

• As cryptic messages with no recognizable source

SEG ERROR MESSAGES

• ATTEMPT TO REFERENCE UNDEFINED COMMON

A common area is referenced in a module, but the area has not been defined or loaded. This
message may also result from an internal error in a user-written compiler.

• BAD GROUP TYPE

The object file does not meet SEG's expectations. This message usually results from an internal
error in a user-written compiler. Make sure that all of your program modules compile with no
errors. If the message persists, call Prime Customer Engineering.

8-1 Second Edition

8 ERROR MESSAGES

• BAD OBJECT FILE

The user is attempting to load a file that has faulty code. The file may not be an object file or it
may be incorrectly compiled.

• BAD TREENAME. xxxx

The pathname given by the user is incomplete.

• BASE AREA ZERO FULL

All locations in the sector zero base area have been used. Use the AUTOMATIC command to
generate base areas at regular intervals, or use the SETB command to place base areas
specifically.

• BLOCK SIZE MISMATCH

This is an internal or compiler-generated error message. Be sure that all of your program
modules compile with no errors. If the message persists, call Prime Customer Engineering.

• CAN'T LOAD IN SECTORED MODE

The user is attempting to load an object module compiled or assembled in a mode other than V-
or I-mode. Recompile with the -64V option or reassemble in V- or I-mode.

• CAN'T LOAD IN 32R MODE

The user is attempting to load an object module compiled or assembled in 32R mode. Recom­
pile with the -64V option or reassemble in V- or I-mode.

• CHECK SEGMENT

The user attempted to load something into segment '4035, which is reserved for SEG's symbol
table. Reload in such a manner as to avoid using this segment.

• xxxxxxxxx. COMMAND_MAKE. CMDSEG

This message is returned by ERRPR$. The first part of the message consists of one of the error
messages listed in Appendix D of the Subroutines Reference Guide.

• COMMAND ERROR

The command entered is misspelled or does not exist at this level, or the filenames and
parameters following the command are incorrect.

• DEBUG GROUP ENCOUNTERED BEFORE A PROC DEF GROUP

A compiler emitted DBG information before the procedure section of the program. Be sure that
all of your modules compile with no errors. If the message persists, call Prime Customer
Engineering.

DOC3524-192 8-2

ERROR MESSAGES 8

• **EMPTY FILE**

There is nothing in the object file.

• EXTERNAL MEMORY REFERENCE TO ILLEGAL SEGMENT

A compiler tried to load a common block into an inappropriate segment. This is an internal
error. Be sure that all modules compile with no errors. If the error message persists, call Prime
Customer Engineering.

• FILE NOT OPEN

SEG tried to execute a program, but could not open that file. A common source of the message is
an EXECUTE command issued when there is no current or established runfile.

• ILLEGAL ADDRESSING MODE

A direct reference has been made to common areas located in another segment.

• ILLEGAL BLOCK TYPE

This is a compiler-generated error message. Be sure that all modules compile with no errors. If
the message persists, call Prime Customer Engineering.

• ILLEGAL INDEX OR INDIRECT ON AN ADDRESS CONSTANT

This is usually a compiler-generated error message. Be sure that all modules compile with no
errors. If the message persists, call Prime Customer Engineering.

The message may also occur if SEG was unable to find an address because the address was out of
range. Most likely the program module last loaded was larger than 128K bytes. In that case, the
program should be broken into subprograms and recompiled.

• xxxx: ILLEGAL SMALLER/LARGER REDEFINITION OF COMMON

Once a common block is defined with a size, it may not be redefined in another module as
larger. For smaller redefinition, a warning is issued.

• IMPROPER FILE TYPE. SYMCHA.

This message usually indicates that a runfile has not been properly saved due to a control break
from SEG.

• MISSING PROCEDURE END GROUP

This is a compiler-generated message. Be sure that all modules compile with no errors. If the
message persists, call Prime Customer Engineering.

8-3 Second Edition

8 ERROR MESSAGES

• MULTIPLE INDIRECT

SEG was unable to follow an address because it was out of range. Most likely the program
module last loaded was larger than 128K bytes. In that case, the program should be broken into
subprograms and recompiled.

The message may also be caused by a module compiled in 32R mode. It can also happen if code
has accidentally been loaded into base areas as the result of a bad load command sequence.

• NEED SECTOR ZERO LINK

A link is required for address resolution, and no base areas are within reach except sector zero.
This message is only generated when the SZ command has been given.

• NEGATIVE STRING LENGTH. TEMP$S

This is a compiler-generated error. The message may be displayed if a module was compiled
with errors that caused an abort, and then the module was loaded anyway. Recompile. If there
are no errors and the load message persists, call Prime Customer Engineering.

• NO FREE SEGMENTS TO ASSIGN

The total pool of segments available to all users has been used. The user may free some
segments with the DELSEG command. If this is not successful, wait for more free segments or
ask the System Administrator to put more segments in the pool.

• NO ROOM IN SEGMENT

The user is trying to create a base area that is too big for the segment. Not fatal.

• NO ROOM IN SYMBOL TABLE

SEG's symbol table is full. The user may try to reduce the number of symbols used in the
runfile. Probably a new version of SEG with a bigger symbol table is required.

• NOT A SEGMENT DIRECTORY

SEG was invoked to execute a file that is not a segmented file.

• OLD OBJECT FILE

The object file was compiled or assembled in an old revision of the compiler or assembler.
Recompile or reassemble and restart the load.

• OLD OBJECT MODULE — MIX FAILS

The cause and remedy are the same as for the OLD OBJECT FILE error message.

• SAVE FILE TREE NAME:

This is not an error message, but requests a pathname for the runfile.

DOC3524-192 8-4

ERROR MESSAGES 8

• SEG HAS NOT CLOSED ALL THE FILES IT HAS OPENED. CLEAN

The last command entered caused such problems that SEG was not able to do all housekeeping.
It may be necessary to abort the load, correct other problems, and restart.

• SEGMENT ALREADY DEFINED. SYMLIT

This message is caused by an attempt to split an assigned segment or when contiguous
segments are not available for a large COMMON.

• SEGMENT WRAP AROUND TO 0

Block data in the last word of a segment may have been initialized. In this case, the relevant
common block should be moved. The message may also appear if an attempt was made to load a
64R-mode program. Recompile in 64V mode.

• SMALLER REDEFINITION OF COMMON

A common block was defined in one module, and was defined as smaller later during the load.
This is only a warning. It may be suppressed with the VLOAD subcommand NSCW.

• SYMBOL xxx ALREADY EXISTS

An attempt was made to define a new symbol, but the symbol is already in the symbol table.
Give the symbol a new name or, if the old symbol is not needed, delete it with XPUNGE.

• SYMBOL xxx IS UNDEFINED

An attempt was made to equate two symbols, but the first symbol is not in the symbol table.
Not fatal, try again.

• SYMBOL NOT FOUND

The cause is the same as for the preceding message.

• SYMBOL xxx NOT FOUND

The cause is the same as for the preceding message.

• THIS CONTROL ARGUMENT IS NOT IMPLEMENTED

The command SEG was followed by some option other than -LOAD. Reenter the command.

• UNDEFINED SEGMENT. SETSEG

Usually this message means that the SYMBOL command was used in an attempt to allocate
initialized common blocks. The R/SYMBOL or A/SYMBOL command must be used instead.
The message can also be caused by trying to initialize in FORTRAN a BLOCK DATA variable
that has not been previously defined.

8-5 Second Edition

8 ERROR MESSAGES

• WARNING: LOAD NOT COMPLETE

There still exist unresolved references, that is, calls to subroutines that are not in the runfile.
Be sure that all user subroutines and special Prime libraries such as VAPPLB and VSRTLI have
been loaded, and in the right order. A calling program must be loaded before the subroutine it
calls.

• WARNING: SEG IS NOW LOADING INTO SEGMENT 4035.

THIS SEGMENT IS RESERVED BY SEG FOR ITS SYMBOL TABLE.
USAGE OF THIS SEGMENT FOR ANYTHING OTHER THAN UNINITIALIZED
DATA MAY RESULT IN ERROR WHEN ATTEMPTING TO RESTORE THIS
PROGRAM INTO MEMORY.

This error message is self-explanatory.

• WRONG FILE TYPE

LOAD was used with no object.

COMMON PRIMOS ERROR MESSAGES

• ACCESS_VIOLATION$

In general, you have attempted to read a segment to which you don't have rights. Within
programs, this may be caused by an index value higher than it should be. If the program is
generated by the load, one of the modules loaded may be more than 128K bytes in size. This
message may also be generated if the RUNIT stack is overlaid by program linkage and data, or
if reference is made to a segment that has not been shared.

• ILLEGAL_SEGNO$

The user tried to access a segment that is not allocated. The user may have tried to access a
nonshared segment above the current system limit. (The default number is '4040.) Reload
using only segments within the limit, or ask the System Administrator to increase the default
number of user segments (NUSEG in the CONFIG file).

Another source of this message is the attempt to access a segment in the '2xxx range that has not
yet been shared by the System Administrator. If your runfile includes a segment in this range,
make sure that the code to share the program is included in the system build file. How to
include it is explained in Chapter 4.

• LINKAGE_FAULT$

An unresolved call was encountered but the called program could not be found. Usually this
means that a dynamic entry link could not be "snapped" or resolved. Be sure that all required
libraries and user subroutines were loaded. If necessary, start to reload and enter MAP 3 to list
unresolved calls. If a RUNIT file is being created, the main program must be named MAIN.

DOC3524-192 8-6

ERROR MESSAGES 8

• NO_AVAIL_SEG$

The system has run out of available segments. Use DELSEG ALL, or contact your System
Administrator.

• NO FREE SEGMENTS

Paging space is unavailable. Contact your System Administrator.

• POINTER_FAULT$

An attempt was made to transfer control to a subprogram or direct entry link, but it was not
successful. Usually the problem is that not enough arguments or arguments of the wrong type
were passed to the called routine.

• RESTRICTED_INST$

This message may occur if the user forgot the MIX instruction in a split load.

• STACK_OVERFLOW$

There was not enough room in the stack. See Chapter 4 on how to extend the stack.

• UNDEFINED SEGMENT

The user tried to access a segment that is not available.

MESSAGES FROM ERRPR$

Usually SEG invokes the subroutine ERRPR$ to display its error messages. This is particularly
useful because many of the error codes are those produced by other subroutines called by SEG.
The use of ERRPR$ and a listing of codes it interprets are explained in Appendix D of the
Subroutines Reference Guide for Rev. 19. Most error messages include a brief message and the
name of the reporting routine. These messages are usually self-explanatory. They use this
format:

message 1 [message 2] reporting routine

Example:

Bad key in c a l l (SEGPRW)

In this case, the user probably was using the SHARE command to write a non-segmented file,
but had forgotten to use the MIX command first.

Second Edition

8 ERROR MESSAGES

CRYPTIC MESSAGES

Sometimes the load procedure, or subsequent execution of the program, may abort with
garbled displays on the screen. The cause is frequently overlaying of a stack to the extent that
SEG or the operating system is not able even to return a message to that effect. In making
RUNIT files, be sure that the first operand of the SPLIT command is high enough to avoid
overlaying all of the linkage and data of the runfile.

The cause may also be overwriting of segment '4035. Another cause may be use of S/LO that
makes a segment overflow. In this case, the data being loaded wraps around to the beginning
of the segment and destroys data already there.

DOC3524-192

PART II

LOAD

9
LOADING R-MODE

PROGRAMS

INTRODUCTION

The LOAD utility is used for loading object files compiled in 32R or 64R mode. Most programs
compiled or assembled on Prime's 50 series of computers, however, are produced in V-mode
and are loaded with the SEG utility described in the first part of this guide.

The following description emphasizes the loader commands and functions that are of most use
to a programmer. For a complete description of all loader commands, including those for
advanced system-level programming, see Chapter 10.

USING LOAD

The PRIMOS command LOAD transfers control to the R-mode loader, which prints a $ prompt
character and awaits a loader subcommand. After executing a command successfully, the
loader repeats the $ prompt character.

If an error occurs during an operation, the loader prints an error message, then the $ prompt
character if the error is not fatal. Loader error messages and suggested handling techniques are
discussed in Chapter 12. Most of the errors encountered are caused by large programs for
which the user is not making full use of the loader capabilities.

9-1 Second Edition

9 LOADING R-MODE PROGRAMS

When a system error (FILE IN USE, ILLEGAL NAME, NO RIGHT, etc.) is encountered, the
loader prints this system error and returns the $ prompt symbol if the error is not fatal.

The loader remains in control until a QUIT or PAUSE subcommand returns control to PRIMOS,
or an EXECUTE subcommand starts execution of the loaded program.

Load subcommands can be used in command files. Comment lines must be preceded by an
asterisk (*), or they will result in a CM (command error) message.

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward commands needed.
The loader has many additional features to optimize runfile size or speed, perform difficult
loads, and deal with possible complications. This chapter presents the most frequently used
load commands and operations first to enable immediate use of the loader. Advanced features
are then described. The next chapter has a summary of all loader commands.

The following commands accomplish most loading functions:

PRIMOS-Level Commands Function

FILMEM Initializes user space in preparation for load.

LOAD Invokes loader for entry of subcommands.

RESUME Starts execution of a loaded, saved runfile.

LOAD Subcommands

MODE option

LOAD pathname

LIBRARY [filename]

MAP [option]

INITIALIZE

SAVE pathname

QUIT or PAUSE

Function

Sets runfile addressing mode. Default is D32R.

Loads specified object file.

Loads library object files from UFD named LIB. (Default is
FTNLIB.)

Prints load map. Option 6 shows unresolved references.

Returns loader to starting condition in case of command
errors or faulty load.

Saves loaded memory image as runfile.

Returns to PRIMOS.

DOC3524-192 9-2

LOADING R-MODE PROGRAMS 9

Most loads can be accomplished by the following procedure:

1. Use the PRIMOS FILMEM command to initialize memory.

2. Invoke LOAD.

3. Use the MODE command to set the addressing mode, if necessary. (The default is 32R
mode.)

4. Use the loader's LOAD subcommand to load the object file and any separately
compiled subroutines. If the object filename is of the format program.BIN, only the
part of the name before the suffix BIN need be entered.

5. Use loader's LIBRARY subcommand to load subroutines called from libraries (the
default is FTNLIB in the UFD LIB). Other libraries, such as SRTLIB or APPLIB, must
be named explicitly.

6. If the message LOAD COMPLETE is not displayed, enter a MAP 6 to identify the
unsatisfied references, and load them. If no LOAD COMPLETE is displayed the
second time, enter LI again.

7. SAVE the runfile. If no filename is specified, the runfile is automatically named
program.SAVE.

8. Enter QUIT to return to PRIMOS, or EXECUTE to execute the program and return to
PRIMOS.

If Step 6 produces a LOAD COMPLETE message, then loading was accomplished. If there is a
problem, it will become apparent by the absence of a LOAD COMPLETE message or by a loader
error message. (See Chapter 12 for a complete list of all loader error messages and their
probable cause and correction.)

After a successful load, you can either start runfile execution from LOAD command level, or
exit from the loader and start execution through the PRIMOS command RESUME. The
following example assumes that the source program SYM.FTN was compiled in 32R mode to
produce the object file SYM.BIN.

OK LOAD
$ LOAD SYM
$ LI
LOAD COMPLETE
$ SAVE
$ QUIT

Order of Loading

The following loading order is recommended:

• Main program.

• Separately compiled user subroutines (preferably in order of frequency of use).

• Other Prime libraries (LI filename).

• System FORTRAN library (LI).

9-3 Second Edition

9 LOADING R-MODE PROGRAMS

Loading Library Subroutines

Standard FORTRAN mathematical and input /output functions are implemented by subrou­
tines in the library file FTNLIB in the UFD named LIB. The appropriate subroutines from this
file are loaded by the LIBRARY command given without a filename argument. If subroutines
from other libraries are used, such as MATHLB, SRTLIB, or APPLIB, additional LIBRARY
commands are required that include the desired library as an argument.

Load Maps

During loading, the loader collects information about the results of the load process, which can
be printed at the terminal (or written to a file) by the MAP command:

MAP [pathname] [option]

The information in the map can be consulted to diagnose problems in loading, or to optimize
placement of modules, linkage areas, and common blocks in complex loads.

Load information is printed in four sections, as shown in Chapter 11. The amount of informa­
tion printed is controlled by MAP option codes:

Option Load Map Information

None, 0, Load state, base area, and symbol storage; symbols sorted by address,

or 4

1 Load state only.

2 Load state and base areas.

3 Unsatisfied references, sorted by address.

6 Unsatisfied references, sorted in alphabetical order.

7 Full map, symbols sorted in alphabetic order.

10 Special symbol map for PSD (to a file).

DOC3524-192 9-4

LOADING R-MODE PROGRAMS 9

ADVANCED LOADING TECHNIQUES

When standard loading goes well, the user can ignore most of the loader's advanced features.
However, situations can arise where some detailed knowledge of the loader's tasks can
optimize size or performance of a runfile, or even make a critical load possible. From that
viewpoint, the main tasks of the loader are:

• Convert block-format object code into a runtime version of the program (executable
machine instructions, binary data, and data blocks).

• Resolve address linkages (symbolic names of variables, subroutine entry points, data
items, etc.) into appropriate binary address values.

• Perform address resolution.

• Detect and flag errors such as unresolved external references, memory overflow, etc.

• Build (and, on request, print) a load map. The map may also be written to a file.

• Reserve common blocks as specified by object modules.

• Keep track of runfile's hardware execution requirements and make user aware of a
need to load subroutines from the Unimplemented Instruction Interrupt (UII) library.

Virtual Loading

The loader occupies the upper 64K bytes of the user's 128K-byte virtual address space.
Programs up to 64K bytes are loaded directly into the memory locations from which they
execute. Programs loaded in this manner can be started by the loader's EXECUTE command
without being saved. For larger 64R-mode programs, the loader uses the available memory as
buffer space and transfers loaded pages of memory to a temporary file that accomodates a full
128K-byte memory image. When loading is complete, the file must be assigned a name by the
loader's SAVE command; it can then be executed either through the loader's EXECUTE
command or the PRIMOS command RESUME.

The loader remains attached to the working directory throughout loading for access to the
temporary file. Files in other directories can be loaded by giving their pathname in a LOAD
command.

Object Code

Inputs to the loader are in the form of object code — a symbolic, block-format file generated by
all of Prime's language translators. Prime's system library files consist of subroutines in this
format.

The loader combines the user's main program object file with the object files of all referenced
subroutines into a single runfile. The runfile is then ready for execution, either directly
through the loader's EXECUTE command or through the PRIMOS command RESUME.

9-5 Second Edition

9 LOADING R-MODE PROGRAMS

Runfiles

A runfile consists of a header block followed by the runfile text in memory image format. The
header contains information that enables the runfile to be brought into memory by the
PRIMOS command RESTORE or RESUME. Contents of the header can be examined after a
RESTORE by the PM command. (See the PRIMOS Commands Reference Guide.)

Selecting the Addressing Mode

The 32R addressing mode is retained as the loader's default for compatibility with existing
command files. The only significant difference between 32R and 64R for small programs is
that 32R permits multiple indirect links, while 64R allows only one level of indirection. In
certain situations such as processing of multi-dimensional arrays, 32R mode may enable the
compiler to produce a runfile that is somewhat more compact or runs slightly faster. However,
for programs that approach the 64K byte boundary, 64R mode ensures successful loading with
no significant penalties of size or speed. Thus MODE D64R is recommended for most
applications.

Address Resolution (Base Areas)

The loader resolves out-of-range address references. These arise because 16-bit memory
reference instructions cannot directly reference all of memory. The loader compensates for this
by generating a pointer to the operand and then modifying the instruction to reference
through the pointer. These pointers are located in reserved areas called base areas.

The default base area is from memory location '200 to 777. For many programs, this area will
be sufficient. However, for larger programs this area might be inadequate. The loader has a
number of commands to enlarge the default base area and create local base areas.

The base area below location '1000 can be used to resolve any instruction, no matter what its
location. Local base areas (above location '1000) can be used only to resolve instructions in a
window around the local base area. The window extends approximately '400 locations above
and below the base area.

The loader uses local base areas automatically when possible in preference to the base area
below location '1000. Base area locations are not available for any other use during program
loading or execution.

The following error messages indicate a condition usually encountered when loading large
programs:

BASE SECTOR 0 FULL

symbolname XXXXXX NEED SECTOR 0 LINK

DOC3524-192 9-6

LOADING R-MODE PROGRAMS 9

This condition can be avoided in several ways:

• Use the SETBASE command to use addresses '100 - '777. Do not set the lower bound
below '100.

• Give the AUTOMATIC command to enable the loader to assign local linkage areas
before and after individual subroutines.

• Use setbase parameters with a LOAD or LIBRARY command to insert local linkage
areas where they are needed.

• Use the SETBASE command to designate a base area where it is required.

• During compilation of FORTRAN modules, use the -DEBASE option. During assem­
blies use the SETB pseudo-operation.

Locating Common Blocks

By default, the loader sets the high end of common blocks at '077777 (the 64K-byte boundary)
and allocates common area downward from there. If a PROGRAM-COMMON OVERLAP
message occurs, common blocks can be moved higher by the COMMON or DC (Defer
Common) subcommands. DC is recommended. (If DC is used, a LOAD COMPLETE message
will not occur until a SAVE or EXECUTE command is given.)

Unimplemented Instruction Interrupt (UII) Handling

The loader can keep track of the CPU hardware required to execute the instructions generated
by the modules already loaded. This is shown in the UII entry in the load-state section of a load
map. The codes are:

UII Value CPU Required

100 Prime 450 and up
57 Prime 350 or 400
17 Prime 300 with floating-point hardware

3 Prime 300
1 Prime 100 or 200 with HSA
0 Prime 100 or 200

If the UII code on the load map is greater than the value for the target CPU specified by the
HARDWARE command then it will be necessary to load part of the UII library to make
execution possible. When a CPU encounters an instruction not implemented by hardware, a
UII occurs and control is transferred to the appropriate UII routine. This routine simulates the
missing hardware with software routines.

However, the UII routine must be loaded by the command LI UII. This should be the last
LOAD command before the program is saved. The appropriate routines will be selected from
this library to satisfy the additional hardware requirements of the program.

9-7 Second Edition

9 LOADING R-MODE PROGRAMS

To make sure that only the required subroutines are loaded, the user can "subtract" hardware
features that are present in the CPU by entering a HARDWARE command. For example,
assume a load session produces a load map UII value of 17. The target CPU is a Prime 300 (UII
value 3). The command:

HA 3

reduces the load state UII value to 14 and ensures that the high-speed arithmetic subroutines
do not occupy space in the runfile.

If, after a HARDWARE command, the load state UII value is 0, the UII library need not be
loaded.

System Programming Features

The following commands are primarily of interest to assembly language and systems program­
mers. They are described in more detail in Chapter 10.

Command

F/

P/

PB

CH, SS, SY, XP

EN

ER

SZ

Meaning

Prefix to LOAD and LIBRARY that forceloads unreferenced
modules.

Prefix to LOAD and LIBRARY that starts loading on next page
boundary. (Can reduce paging time).

Program break. Resume loading at a new location.

Symbol control commands.

Command to save a copy of entire load session, for building of
program overlays.

Command to control action taken by loader following errors.

Command to control use of sector 0.

DOC3524-192 9-8

10
LOAD COMMANDS

Following is a summary of all LOAD commands, in alphabetical order. All file names may be
specified by pathnames. All numerical values must be octal.

• ATTACH [ufdname [password]] [ldisk [key]]

Attaches to specified directory. This command is obsolete with Rev. 18, as LOAD accepts full
pathnames for files in other directories.

• AUTOMATIC base-length

Instructs the loader to insert linkage area automatically, helping to reduce the number of loads
that use sector 0 link space.

Whenever the loader detects the end of a routine, and more than '300 (octal) locations have
been loaded since the last base area was inserted, the loader inserts a base area of the size
specified by base-length (octal).

The value of base-length may be changed between load files. This automatic feature may be
turned off with an AU 0 command.

10-1 Second Edition

10 LOAD C O M M A N D S

• CHECK [symbol-name] [param-l]...[param-9]

Checks the value of the current PBRK against the value of a symbol or number. (PBRK is the
current load point, or address at which the next module will automatically be loaded.) This is
useful when it is necessary to load modules out of order and below previously loaded
information, or when a module should not exceed a certain size.

symbol-name is an optional symbol that must be defined in the symbol table, param-1
through param-9 are octal parameters that are summed to form either an address or an offset
from symbol-name. Each number may be preceded by a dash, - , in which case it will be
negated.

For example if the value (location) of OVRFLW is '17777 and PBRK is '20010, then:

CH OVRFLW

will report '000011 WDS OVERLAP'. If on the other hand PBRK was '17770, then CHECK
would report '000007 WDS TO SPARE'.

Similarly, CH 50000 - 20 compares PBRK with '47760, and CH OVRFLW 10000 compares
PBRK with '27777.

• COMMON address

Moves the top or starting location of FORTRAN-compatible common blocks to the octal
address specified. Space for common items is allocated downward from, but not including, the
starting location. The top of common is the last location used for common by the loader. The
default load address for common blocks is '077777.

To specify a common load point, give the location desired plus 1. For example, CO 0 specifies
'177777 as the top location in common.

Note

At Rev. 16 and above, the DC (Defer common) command is the preferred method of
moving common. The COMMON command is retained for compatibility with
previous releases of LOAD.

• DC [END]

Defers definition of common blocks until convenient or until a SAVE or EXECUTE command is
given.

A DC command without the END option enables deferred common, so that common is created
immediately following the loaded program instead of being defined as "down from
CMHIGH". For example, if a user has loaded FOO and the library with LOAD, memory
allocation looks like Figure 10-1.

DOC3524-192 10-2

LOAD COMMANDS 10

FOO FTNLIB COMMON

1000 60000

Common Blocks Loaded Without the DC Command
Figure 10-1

If the program were loaded under the DC option, the memory allocation could be represented
as Figure 10-2.

FOO FTNLIB COMMON

1000 60000

Common Blocks Loaded With the DC Command
Figure 10-2

Common blocks are defined (allocated) as follows:

• When the user gives the DC END command, all common area is defined.

• When the loaded program attempts to initialize a common block, that block is defined.

• When a PMA module creates a common block, it is defined.

• When a SAVE or EXECUTE command is given, all common area is defined.

• EN pathname

Saves the entire state of the loader, complete with the temporary file. The current running
copy of the loader is saved as a runfile, together with all buffers and data bases. The current
copy of the temporary file is copied into a new temporary file and the original is closed. (The
new temporary file also has a name of the form T$XXXX.) The pathname is the name of the
saved copy of the loader.

The EN command is provided as a convenience in overlay building, once the main program
and common blocks have been created. The current copy of the loader and the new temporary
file are used to create the first overlay. Subsequent overlays are created using the saved copy.

10-3 Second Edition

10 LOAD COMMANDS

A commen ted example of the use of EN follows. The example creates a n e w file from object
files n a m e d MAIN.BIN and OVERl.BIN.

OK, LOAD
$ LO MAIN 10000
$ LI
$ SAVE
$ EN MAINLDR
$ LO 0VER1 1000
$ LI
$ SAVE
$ QUIT

Load main program (MAIN.BIN) above o v e r l a y s
S a t i s f y i t s l i b r a r y r e f e r e n c e s .
Save i t as MAIN.SAVE.
C r e a t e saved copy of l o a d e r .
B u i l d f i r s t o v e r l a y .

Save i t as OVER1.SAVE.

OK, R MAINLDR
$ EN MAINLDR
$ LO B_OVER2 100 0
$ LI
$ SAVE 0VER2.SAVE
$ QUIT

Preserve state of temporary file.
Create second overlay.

Save it with new filename convention,

OK, R MAINLDR
$ LO B_OVER3 1000
$ LI
$ SAVE OVER3.SAVE
$ QUIT

Only three overlays.

OK,

In the example above, overlays are sandwiched be tween the ma in p rog ram a n d its l inks to
avoid sector zero l ink conflicts. W h e n the second of the three overlays is to be created, an EN
command is the first loader command given. This preserves the " i n c o m i n g " temporary file for
use in bu i ld ing the next overlay.

The save range for the overlays includes all locations loaded u p to the t ime of the save. The save
ranges can be changed us ing the RR command prior to the EN c o m m a n d in order to decrease
the size of the runfi le .

• ER error-code

Tells t he loader w h a t act ion to take w h e n an error occurs — in part icular , errors of the mul t ip le
indirect or sector-zero overflow class.

error-code Action

1 "Mul t ip le Indi rec t" errors are no ted on the te rminal , bu t load ing cont in­
ues. All o ther errors terminate loading of the offending object file, and
LOAD re tu rns to its command level. (Default)

0 Errors genera ted by the SZ command a n d mul t ip le indirect errors are
treated as above. All o ther errors abort loading of the object file.

2 All errors cause a re turn to PRIMOS.

DOC3524-192 10-4

LOAD C O M M A N D S 10

> EXECUTE [a] [b] [x]

Starts execution of the loaded program with optional values preset into the A, B, and X
registers. Execution starts at the location specified by the *START entry of the load map.

All 32R, 16S, and 32S programs can be executed directly, without being saved. However, if an
EXECUTE is attempted on a 64R-mode program that contains information outside of the virtual
loader buffer space, LOAD will respond with "CAN'T - PLEASE SAVE". Once the image has
been saved, it may be executed.

EXECUTE closes and deletes the temporary file if it has been saved. If not, the file remains open
and loading can continue.

LIBRARY
• F/ <(} pathname [parameters]

LOAD

Forceloads all of the modules in an object file regardless of whether they have been referenced
and regardless of whether the load is complete. Parameters are the same as for LOAD.

• HARDWARE definition

Defines the hardware available in the CPU on which the load module is intended to execute.
The definition parameter is an octal code with the following values:

CPU

P450 and up
P350,P400
P300/FP
P300
P200/HSA
P100/HSA
P200
P100

Definition

100
57
17

3
1
1
0
0

(FP is floating-point hardware and HSA is High Speed Arithmetic.)

The definition value is subtracted from any UII requirements accumulated during loading. If
the UII value on a subsequent load map is 0, the UII library need not be loaded.

See the discussion of UII handling in Chapter 9 for more information.

10-5 Second Edition

10 LOAD C O M M A N D S

• IN ITIALIZE [pathname] [parameters]

Initializes the loader and then optionally performs the same functions as a LOAD command
without returning to PRIMOS level. In the loader's initialized state, the load state parameters
return to their initial values. If no filename is provided, the loader repeats its prompt character
($). Parameters are the same as for LOAD.

• LI BRARY [filename] [loadpoint]

Attaches to the UFD named LIB, loads from the specified library (filename), and then re­
attaches to the original UFD.

Filename is the name of a specific library in LIB. The default is FTNLIB. Loadpoint is the
address where loading is to start. The default is *PBRK.

The LIBRARY command accepts the P/ and F/ prefixes.

• LO AD [pathname] [parameters]

Loads the object file specified by pathname. The arguments may be entered in three formats:

1. loadpoint [setbase-l]...[setbase-8]

2. * [setbase-l]...[setbase-9]

3. symbol [setbase-l]...[setbase-9]

In form 1, loadpoint is the starting location of the load. In form 2, the load starts at the current
PBRK location (*). In form 3, the load address can be stated symbolically (symbol).

The parameters (setbase-1, etc.) are octal values that specify the size of linkage areas to be
inserted before and after modules during loading. If the last parameter is '177777, the loader
requests more setbase values.

As an example of linkage area placement, assume that there are four modules (subroutines) in
an object file named SUB4.BIN; the command:

LO SUB4 2000 10 20 0 40 50

causes loading to begin at '2000, where a base area of length '10 is created before the first
routine, one of length '20 after the first routine, none after the second routine, one of length '40
after the third routine, and one of length '50 after the fourth routine.

In form 2, the numeric parameters are interpreted as base area lengths as above. For example:

LO B_BIG * 30 30

starts loading at the current PBRK value and places base areas of length '30 before and after the
first routine in object file B_BIG.

DOC3524-192 10-6

LOAD COMMANDS 10

In form 3, if the symbol FSTEND has the value (location) '10000, then:

L0 B_MIDDLE FSTEND

causes LOAD to begin loading at '10000. The only requirement is that FSTEND be a defined
symbol. This can be accomplished either by the SYMBOL command or through symbol
definition from an object module. As in the other two forms of the command, any numeric
parameters are interpreted as base area lengths.

If the load arguments are not assigned by the command string, the following default values
apply:

Loadpoint *PBRK (initially '1000)
Base-start '200
Base-range '600

If all of the symbols in the load module have been previously defined, the loader skips the
module. A load module is defined to terminate with an "END" statement. To force loading of a
module that contains only previously defined symbols, use the F/ (forced load) prefix with the
LOAD command.

• MAP [pathname] [option]

Generates a load state map on the terminal, or in a file if pathname is specified.

Option Meaning

0 Load state, base area, symbol storage map;
symbols sorted by address (Default)

1 Load state only
2 Load state and base area
3 Unsatisfied references, sorted by address
4 Same as 0
5 Reserved
6 Unsatisfied references, sorted alphabetically
7 Full map, symbols sorted alphabetically

10 Special symbol map for PSD (to a file)

Map formats and conventions are described in detail in Chapter 11.

D64V
D32R

DM < D64R
D16S
D32S

Specifies address resolution mode for next load module (32K relative, or D32R, is the default).
If used, MODE must precede other LOAD commands. The mode set by this command may be
overridden by mode control statements in object files.

10-7 Second Edition

10 LOAD C O M M A N D S

• PAUSE

Returns to PRIMOS for execution of an internal command (such as LISTF). The loader's
temporary file is left open and the load state is preserved, so that loading can continue after a
PRIMOS START command.

Note

QUIT also returns to PRIMOS, but the temporary file is closed and deleted, so loading
cannot continue.

([symbol-name] [offset-l]...[offset-9])
• PBRK < >

I [*] offset-1 [offset-2]...[offset-9])

Sets PBRK (see Glossary) to the value of a symbol or an octal value, with optional offset values.
Like the CHECK command, it is intended to facilitate complicated loads.

Symbol-name, if present, must be a defined symbol. Offset-1, etc., are octal parameters that
will be summed. If symbol-name is present, the sum of the numbers is treated as an offset from
the specified symbol. If the asterisk (*) is used, the sum is treated as an offset from the current
PBRK. If neither is present, the sum is the actual value to which PBRK is set. For example:

PB 10000 10

moves the value of PBRK to '10010. Similarly, if OLDEND is a symbol with the value '17456,
then:

PB OLDEND 10

sets PBRK to '17466.

If PBRK is currently '1000, then:

PB * 10000 -77

sets PBRK to '10701.

(LIBRARY \
• P/ I } [pathname] [parameters]

(LOAD)

Begins loading at the next page boundary. See LOAD for the meaning of the other arguments.

The P/ and F/ prefixes may be concatenated, as in:

P/F/LO MODULE

DOC3524-192 10-8

LOAD C O M M A N D S 10

• QUIT

Deletes the temporary file, closes the map file (if the loader opened it), and returns to PRIMOS.
The user is reattached to the home UFD. (Also see PAUSE.)

• RR [start-addr] [end-addr]

Resets the runfile save range. The start-addr default is -1 and the end-addr default is 0. For
example:

OK, FILMEM ALL

OK, LOAD
$ LO POO 11000
$ LI
LOAD COMPLETE
$ MA 2
•START 011000
*CML0W 0777 7 7

/• LOADS POO.BIN

•LOW 000200
•CMHGH 077777

HIGH 020144 •PBRK 020115
•SYM 000062 •UII 000003

•BASE 000200 000231
•BASE 011524 011571
•BASE 012574 012655
•BASE 013655 013710
•BASE 014701 014722

000777 000777
011574 011575
012656 012657
013716 013716
014724 014724

$ VI 200 10
$ RR 10200 20144
$ SA
$ Q

/• SAVES POO.SAVE

OK, CO TTY
OK, RESTORE POO.SAVE
OK, PM
SA,EA,P,A,B,X,K=
10200 20144 11000 0 0 0 6 00

• SAVE pathname [a] [b] [x]

Saves the loaded memory image from *LOW to *HIGH, including all initialized common areas,
under the name pathname. At this time, the user has the option to store new values in the A, B,
and X registers. Also saved with the program are the low, high, start, and keys parameters
obtained from the loader. The RR command can be used before the SAVE command to store
new low and high values.

10-9 Second Edition

10 LOAD C O M M A N D S

• SETBASE
base-start [base-range]

* base-range

Defines a base area that begins at base-start and includes the number of locations specified by
base-range. If the range is not specified, the end of the area is location '777 of the sector
containing the base-start location. Multiple base areas are allowed. A command to create a base
area that overlaps a previously defined area is ignored. The default values are:

Base-start '200

Base-range '600

Base-start can be set at the current location by using the asterisk (*). Thus, if PBRK (base-start)
is '1765, the command SETBASE * 20 creates a set-base area of length 20 at '1765 and PBRK is set
at '2005 after the command has been executed.

The user may wish to increase the size of the sector zero base area by the command SE100 at the
start of a load session. The beginning of the sector zero base area should not be made lower
than '100.

• SS symbol-name

Specifies a symbol name that will not be deleted by the XPUNGE command. Symbol-name
must be defined in the symbol table. All symbols thus referenced are not deleted if the symbol
table is expunged.

(old-name [offset-l]...[offset-9]]
• SYMBOL symbol-name < address [offset-2]...[offset-9] I

I * offset-1 [offset-2]...[offset-9])

Establishes locations in the memory map for common blocks or to provide relocation points for
the course of the load. They may also be used to satisfy references.

Symbols follow the same rules as filenames, but are restricted to eight characters.

The first form allows the user to equate two symbols or to equate the new symbol to an offset
from the old. For example:

SY SNAME OLDSYM

equates SNAME to OLDSYM, which must be a defined symbol in the symbol table.

The second form allows the user to equate a symbol to an octal value. For example:

SY SNAME 1300 20 - 7 10

sets SNAME to '1321

The third form of the command permits the user to equate the symbol to the value of the
current PBRK plus the sum of the numeric parameters. For example, the sequence of
commands:

SY OVRFLW *

DOC3524-192 10-10

LOAD C O M M A N D S 10

LO TEST * 10 20
CH OVRFLW 10 567 2 0

allows the user to be sure that the module TEST.BIN does not occupy more that '567 locations.

• SZ
YES

NO •

Prevents routines from using sector zero links.

If SZ or SZ NO is given, LOAD will not put links in sector zero. Instead, it will flag any attempt
to do so, giving the location of the instruction attempting to link. This will normally terminate
the loading of the object file. However, if an ERROR 0 command has been given, loading will
continue and thus will generate a list of sector zero link attempts. A sector zero base area will
be created, but no links will be put into it while the SZ NO is in effect.

If SZ YES is given, linking is again permitted in sector zero.

• VIRTUALBASE base-start to-sector

Copies the base sector (from the base-start location to the end) to the corresponding locations
of to-sector. This command is intended for use in building RTOS modules using dedicated
sector zero or base sector relocation.

• XPUNGE d-symbols d-base

Controls the deletion of symbols and base areas.

d-symbols An octal value that controls the deletion of symbols:

0 Deletes all but undefined symbols.

1 Deletes all symbols except undefined symbols and symbols for
common areas.

d-base An octal value that controls the deletion of base areas:

0 Deletes all defined base areas from the symbol table.

1 Deletes all defined base areas except sector zero.

2 Retains all defined base areas.

• * comments

Comments may be included in a command file when an asterisk and a blank or two blanks
precede the comment. The rest of the line is not processed by the loader.

10-11 Second Edition

11
R-MODE LOAD

MAPS

This chapter describes the sections of an R-Mode load map. See Figures 11-1 and 11-2 for
examples of a full map.

Load State

The load state area shows where the program has been loaded, the start-of-execution location,
the area occupied by common blocks, the size of the symbol table, and the UII status. All
locations are octal numbers.

*START The location at which execution of the loaded program will begin. The default
is '1000.

*LOW The lowest memory image location occupied by the program. Executable code
normally starts at '1000, but sector 0 address links (if any) normally begin at
'200.

*HIGH The highest memory image location occupied by the program (excluding any
area reserved for uninitialized common blocks).

*PBRK "Program Break": The next available location for loading. It normally is the
location following the last loaded module, but can be moved by PBRK or the
LOAD family of commands.

11-1 Second Edition

11 R - M O D E L O A D M A P S

•START 001000
•CMLOW 077777

•LOW 001000
•CMHGH 077777

• HIGH
• SYM

001020
000004

• PBRK
• UII

001021
000000

MAIN 001000 EXIT 001016

COMMON BLOCKS

LIST 000001

Full Map (MA)
Figure 11-1

•START 001000
•CMLOW 077777

EXIT 001016 MAIN 001000

COMMON BLOCKS

LIST 000001

• LOW
•CMHGH

001000
077777

• HIGH
• SYM

001020
000004

• PBRK
• UII

001021
000000

Full Map , Symbols Sorted Alphabetical ly (MA 7)
Figure 11-2

*CMLOW The low end of the common area.

*CMHGH The top of the common area.

*SYM The n u m b e r of symbols in the loader 's symbol table. This is usual ly of no
concern unless the symbol space crowds out the last r ema in ing runfi le buffer
area. (There is room for about 4000 symbols before c rowding is a risk.)

*UII A code represen t ing the ha rdware required to execute the ins t ruct ions in
loaded modules . Codes and other informat ion are described in Chapte r 9.

DOC3524-192 11-2

R-MODE LOAD MAPS 11

Base Areas

The base area map includes the lowest, highest and next available locations for all defined base
areas. Each line contains four addresses as follows:

*BASE AAAAAA BBBBBB CCCCCC DDDDDD

AAAAAA Lowest location defined for this area

BBBBBB Next available location if starting up from AAAAAA

CCCCCC Next available location if starting down from DDDDDD

DDDDDD Highest location defined for this area

Symbol Storage

The symbol storage listing consists of every defined label or external reference name, printed
four per line in the following format:

namexxxx N N N N N N

or

**namexxxx N N N N N N

NNNNNN is a six-digit octal address. The ** flag means the reference is unsatisfied (has not
been loaded).

Symbols are listed by ascending address (default) or in alphabetical order (MAP 0 or MAP 7).
The list may be restricted to unsatisfied references only (MAP 3 or MAP 6). Since the symbol
table is already in alphabetical order, MAP 6 or MAP 7 is faster. Figure 11-2 shows a map
created with MAP 7.

Common Blocks

The low end and size of each common area are listed, along with the name (if any). Every map
includes a reference to the special common block, LIST, defined as starting at location 1. This is
provided to allow FORTRAN programs to address any location in the segment easily, using the
construct:

INTEGER*2 LOCNO (1)
COMMON/LIST/LOCNO

Reference to LOCNO(N) refers to the location identified by the value of N.

11-3 Second Edition

12
LOAD ERROR

MESSAGES

The following are the LOAD error messages:

• ALREADY EXISTS !

An attempt is being made to define a new symbol; however, the symbol name is already a
defined symbol in the symbol table. Not fatal; try again.

• ATTEMPT TO LOAD IN LOCS. 0-10

The program has loaded into the last location in memory and has wrapped around to load in
location 0. The program size must be decreased. Alternatively, compile in 64V mode and use
SEG. Fatal; abort load.

• BAD OBJECT FILE

The object text is not recognizable. This usually occurs when an attempt is made to load source
code or when the object text was compiled or assembled for segmented loading. Fatal; abort
load.

12-1 Second Edition

12 LOAD ERROR MESSAGES

• BASE SECTOR 0 FULL

All locations in the sector zero base area have been used. Use the AU command to generate base
areas at regular intervals, or use the SETB or LOAD commands to place base areas specifically.
Fatal; abort load.

• sname xxxxxx CANT DEFER COMMON, OLD OBJECT TEXT

The DC command has been given and a module created with a pre-Rev. 14 compiler or
assembler has been encountered. It is not possible to defer common block sname at load point
xxxxxx in this case. The module must be recreated with the current compiler or assembler.
Fatal; abort load.

• CAN'T - PLEASE SAVE

The EXECUTE command has been given for a runfile that has required virtual loading. Not
fatal. Save the runfile and give the EXECUTE command.

• CM$

Command line error. Unrecognized command given. Not fatal; try again.

• COMMON OUT OF REACH

COMMON above '100000 is out of reach of the current load mode (16S, 32S, or 32R). Use the
MODE command to set the load mode to 64R. Fatal; abort load.

• sname xxxxxx COMMON TOO LARGE

Definition of common block sname at load point xxxxxx causes common to wrap around
through zero. Moving the top of common — with the COMMON command — may help. Fatal;
abort load.

• D PREFIX MISSING

For the address mode specification, the first character must be a D. Not fatal; try again.

• WARNING! sname xxxxxx ENTRY/COMMON NAME CONFLICT

The load will continue without being affected. However, if the entry is to a subroutine, the
user probably inadvertently used the name of a library routine for a user-named common
block.

• sname xxxxxx ILLEGAL COMMON REDEFINITION

An attempt is being made to redefine common block sname at load point xxxxxx to a longer
length. The user's program should be examined for consistent common definitions. At the
very least the longest definition for a common block should be first, or common definition
could be deferred. Fatal; abort load.

DOC3524-192 12-2

LOAD ERROR MESSAGES 12

• 64R LOAD MODE INVALID

A module compiled or assembled to run in only 32K of memory is being loaded in 64R mode.
Recompile or reassemble or change the load mode with the loader's MODE command. Fatal;
abort load.

• xxxxxx MULTIPLE INDIRECT

A module loading in 64R mode requires a second level of indirection at location xxxxxx. This
message usually results when an attempt is made to load code compiled or assembled for 32R
mode in 64R mode. It can also happen if code has accidentally been loaded into base areas as the
result of a bad load command sequence. This results in a link without an address. The load
continues.

• sname xxxxxx NEED SECTOR ZERO LINK

At location xxxxxx a link is required for address resolution. No base areas are within reach
except sector zero. The last referenced symbol was sname. This message is only generated
when the SZ command has been given. Sname may be the name of a common block, the
name of the routine to which the link should be made, or the name of the module being loaded.
Fatal; abort load.

• NO POST BASE AREA, OLD OBJECT TEXT

A post base area has been specified for a module that was created with a pre-Rev. 14 compiler or
assembler. No base area is created. Recreate the object text with the current compiler or
assembler. Fatal; abort load.

• NO ROOM IN SYMBOL TABLE

The symbol table has been expanded to its limit. Reduce the number of symbols in the load.
Fatal; abort load.

• PROGRAM-COMMON OVERLAP

The module being loaded is attempting to load code into an area reserved for common blocks.
Use the loader's COMMON command to move common up higher. Fatal; abort load.

• sname xxxxxx REFERENCE TO UNDEFINED COMMON

An attempt is being made to link to common block sname, which has not been defined at load
point xxxxxx. This usually happens to users creating their own translators. Fatal; abort load.

• SECTORED LOAD MODE INVALID

A module compiled or assembled to load in R mode has been loaded in S mode. Use the MODE
command to reset the load mode. It might be a good idea to be sure that all modules are
correctly written, since the default load mode is 32R. Fatal; abort load.

12-3 Second Edition

12 LOAD ERROR MESSAGES

• SYMBOL NOT FOUND

An attempt is being made to equate two symbols with the SYMBOL command and the old
symbol does not exist. Not fatal; try again.

• SYMBOL UNDEFINED

An attempt is being made to equate two symbols; however, the old symbol is an undefined
symbol in the symbol table. Not fatal; try again.

DOC3524-192 12-4

APPENDIXES

A
SEG'S FUNCTIONS

INTRODUCTION

This Appendix describes each of SEG's functions, expanding upon the list in Chapter 1.

Produce Optimized Runfiles

Runfiles can be optimized in the following ways.

• If you don't want the default load of instructions and data into separate segments, you
can use the MIX command of SEG to create runfiles with no division of function.
These files are usually smaller than runfiles created with the default loading method.
The process is described in Chapter 4.

• An optimized runfile may have a smaller execution unit than SEG. SEG includes a
small execution unit called RUNIT. This unit can be loaded into a runfile, and the
whole file can occupy segment '4000 instead of putting SEG in '4000 and the runfile in
other segments. Execution is faster, and allows execution with RESUME as well as
execution of the program as a PRIMOS command. RUNIT is loaded with the SPLIT
command of VLOAD, and its uses are discussed in Chapter 4. The resulting runfiles
are sometimes called single-segment runfiles, sequential runfiles, or R-mode-like
runfiles, but none of these names accurately describes all files created by this method.
This manual calls them RUNIT files. These files may also be run as PRIMOS
commands.

A-l Second Edition

A SEG'S FUNCTIONS

Optimization can include relocating data and symbols in the runfile. Certain blocks of
data, called common blocks, are put by the loader in separate segments from those
used for other program data. You can use the COMMON, SYMBOL, SS, A/ , S/, and R/
subcommands of VLOAD to relocate that data more efficiently. The commands are
described in Chapter 6. Examples of COMMON, SYMBOL, and S/ are in Chapter 4.

• An object file can be loaded into a specified segment. Use the S/ subcommand of
VLOAD, described in Chapter 6. Examples are in Chapter 4.

Data or a procedure can be loaded on a page boundary to reduce search time. Use the
P/ subcommand of VLOAD, described in Chapter 5.

Control Base Area Allocation

The base area is that part of a procedure segment used for reference in indirect addressing
instructions. It is normally at the beginning of each procedure segment, and the user need not
be concerned with it unless SEG returns the message SECTOR ZERO BASE AREA FULL. To
allow more space or rearrange it, use the AUTOMATIC, SETBASE, and SZ commands in
Chapter 5. To delete base area information, use XPUNGE.

Prepare Shared Programs

If you have a program to be used concurrently by several users, you can share it with your
System Administrator's authorization. The SHARE or SINGLE command prepares a runfile for
sharing. See Chapter 4 for a description of sharing, and Chapter 5 for lists of these commands.

Change Stack Space and Location

If the stack runs out of space (PRIMOS error message STACK_OVF$), or if too much space is
allocated for it in a small program, you can change its size or location with the SK subcommand
of MODIFY, or change its location with the SPLIT command of SEG. You can change minimum
stack size with the STACK subcommand of VLOAD. SK and SPLIT can also specify extension
segments. Chapters 6 and 7 list these commands; Chapter 4 gives examples.

Produce Load Maps

A load map is a list of the segments being used by a particular runfile, with the address within
each segment of the procedures and data sections that were loaded. SEG allows different map
options, including one that lists only unresolved procedure calls (references) and two that list
only symbols. The load map is created by the MAP command of SEG, and by the MAP
subcommand of VLOAD. Chapter 3 discusses map creation and map reading in detail.

DOC3524-192 A-2

SEG'S FUNCTIONS A

•

Make Templates

A template is a group of routines that you plan to use with several application programs. How
to make and share templates is discussed in Chapter 4. (The EDB utility discussed in the
Subroutines Reference Guide may also be used if sharing is not necessary.) The template
procedure can include:

Forced loading of all routines in a binary file. This process, initiated by the subcom­
mand F/ of VLOAD, is discussed in Chapter 6.

Loading IFTNLB, PFTNLB, and SPLLIB where desired for reentrancy of templates
listed in Chapter 6. Use the IL and PL subcommands of VLOAD.

Execute Runfiles

The command SEG runfilename starts execution of a default runfile previously created. To
execute a runfile just after creating or modifying it, use the EXEC command within VLOAD.
For runfiles containing RUNIT discussed above, use the PRIMOS command RESUME
runfilename. See Chapter 5.

Get Help

The HELP command of SEG (Chapter 5) causes the screen to display a digest of available
commands.

Debug Runfiles

Various debugging procedures are available through SEG:

• Invoke VPSD for debugging. VPSD is a symbolic debugger described in the Assem­
bly Language Programmer's Guide. It may be invoked with the PSD command of SEG
(Chapter 5).

• Check for unresolved references. MAP 6 or MAP 3 show these. Examples are shown
in Chapters 2 and 3.

• Restart a load after an error, overlaying any work already done. Use the INITIALIZE
subcommand of VLOAD (Chapter 6).

• Restart a program at a certain address with the PRIMOS command START after having
interrupted it with CONTROL-P (BREAK). How to do this is discussed in the
subsection on RUNIT in Chapter 4.

A-3 Second Edition

A SEG'S FUNCTIONS

Build Runfiles

• Load an object file into a runfile. Use the LOAD subcommand of VLOAD.

• Load library files. Library files needed for COBOL or other compilers are stored in the
UFD named LIB. The LIBRARY subcommand of VLOAD loads these libraries if you
give only the filename instead of the whole pathname. LI with no pathname loads the
files PFTNLB, IFTNLB, and SPLLIB in LIB, which contains most operating system
subroutines.

• Duplicate the parameters of the previous load. The purpose is to avoid retyping. Use
D/ (Chapter 6).

Modify Runfiles

To patch, save, restore, or copy a runfile without leaving SEG, use the subcommands of the
MODIFY subprocessor listed in Chapter 7. To add or replace modules in an existing runfile,
use the RL subcommand of VLOAD (Chapter 6).

Create a New Runfile Starting from One That Already Exists

If no segments in the runfile are below '4000, use the NEW subcommand of MODIFY (Chapter
7).

Name a Runfile

Use VLOAD or the command line SEG -LOAD discussed with new filename conventions in
Chapter 2. NEW may also name a runfile.

Save Runfiles

The QUIT and SAVE commands of SEG write the current runfile to disk, as do the RETURN
subcommands of VLOAD and MODIFY. So does EXEC, and the WRITE subcommand of
MODIFY. The NEW command also writes segments '4000 and above of a runfile back to disk,
copying it to a new file if a new name is given.

Restore Runfiles in Order to Modify Them Without Executing

Use the RESTORE command of SEG (Chapter 5).

DOC3524-192 A-4

SEG'S FUNCTIONS A

Delete Symbols

Use the XPUNGE subcommand of VLOAD (Chapter 6).

Delete Runfiles

Use the DELETE command of SEG, discussed in Chapter 5.

Check Attributes of a Runfile

Use the VERSION, TIME, and PARAMS commands of SEG to check version, date last modified,
and runtime parameters. All are listed in Chapter 5. The runtime parameters are the starting
address, stack location, keys, and contents of the A, B, and X registers.

Leave SEG and Return to PRIMOS

Use QUIT.

A-5 Second Edition

B
USE OF CMDSEG

CMDSEG

CMDSEG is a command file that handles runfiles larger than one segment. It may be used only
if segment '4000 has nothing above '160000; CMDSEG puts the V-mode interface there. It must
be used if NEW was used on the runfile or if the runfile has multiple segments.

CMDSEG creates an R-mode program called program.SAVE that contains a V-mode interface
routine. When program.SAVE is executed it loads the runfile and transfers control to the V-
mode interface routine. This routine loads the stack base and calls the program. For example,
the following routine creates an R-mode program, MAIN.SAVE, for the V-mode program
MAIN.SEG. Note that only the commands in rust color are entered by the user.

OK, R SEG>CMDSEG MAIN
[CMDSEG version 19.x]
0000 ERRORS [<.DATA.>FTN-REV X.X]
[SEG rev x.x]
vload ENA$RJGQCZBBBBCN.SEG.T
$ co abs 4000
$ mi
$ sz 4000
$ s/li share4 130000 4000 4000
$ xp 1 2
$ sy map 4000 126000
$ s/lO b_ENA$RJGQCZBBBBCK.FTN.T 0 4000 4000
$ au 3

B-l Second Edition

B USE OF CMDSEG

$ d / l o <4>seg>cmdlib.bin
$ au 0
$ d / l i vapplb
$ au 1
$ d / l i
LOAD COMPLETE
$ re
sh
TWO CHARACTER FILE ID: CN
CREATING CN4000
if d e l e t e
I q

Now the new program, MAIN.SAVE, should be installed in CMDNCO and/or shared. Then it
may be invoked to run MAIN.SEG. During the above procedure, CMDSEG does not check that
MAIN.SEG exists, so that the R-mode interlude may be created for a program that is yet to be
developed.

In order to have CMDSEG to check for the existence of the segmented file, enter the command
as R CMDSEG. CMDSEG will then ask for the name of the file. If it cannot find the file, it will
display the message LINKAGE_FAULT$. If the file pathname does not contain a necessary
password, CMDSEG will display the message BAD PASSWORD.

THE OLDER VERSION

Below is an example of CMDSEG before Rev. 19. This program takes the user program,
MAIN.SEG, and creates a program called TEST. This new file must then be installed in
CMDNCO and/or shared.

0 K , R SEOCMDSEG
R SEOCM.CFI.SAVE
RUN FILE NAME: M A I N

FTN S$$SEG -64V -DCL
0000 ERRORS [<MAIN >FTN-REV18.4]
FILMEM ALL
SEG
LOAD SEG.SHARE.SEG
CO ABS 4000
MI
SZ 4000
S/LI SHARE4 130000 4000 4000
XP 1 2
SY MAP 4000 126000
S/LO S$$SEG.BIN 0 4000 4000
au 3
D/LO SEOCMDLIB.BIN
AU 0
D/LI VAPPLB

DOC3524-192 B-2

USE OF CMDSEG B

AU 1
D/LI
RE
SH

SE
DELETE

Q
[SEG rev

LOAD
x. x
SEG

CO ABS 4000
MI
SZ 4000
S/LI SHARE4
XP 1 2
SY MAP 4000
S/LO S$$SEG.

130000 4000 4000

126000
BIN 0 4000 4000

au 3
D/LO SEG>CMDLIB.BIN
AU 0
D/LI VAPPLB
AU 1
D/LI
COMPLETE

LOAD SEG.SHARE.SEG
$
$
$
$
$
$
$
$
$
$
$
$
$
LOAD
$ RE
SH
TWO CHARACTER FILE ID: SE
CREATING SE4000
DELETE

Q
FUTIL

C SE4000 *TEST
DELETE SE4000

Q
[FUTIL rev x.x]
> C SE4000 *TEST
> DELETE SE4000

> 0
REST *TEST
SAVE *TEST 2/130000
DELETE S$$SEG.BIN
DELETE S$$SEG.FTN

B-3 Second Edition

OCTAL TABLES

To convert an octal number to decimal with Table C-1, locate each digit in the correct column
position and add the decimal equivalents of all digits. For example, 675 in octal equals 384 + 56
+ 5 in decimal, or 445. To convert from decimal to octal, locate the largest decimal value in the
table that is still smaller than the number to be converted. Subtract that value from your
number, and look for the result in the column to the right. For example, 95 in decimal is 1 in
the third octal column, 3 in the fourth column, and 7 in the last column; 95 decimal equals 137
in octal.

84

OCT
0
1
2
3
4
5
6
7

DEC
0

4096
8192
12288
16384
20480
24576
28672

83

OCT
0
1
2
3
4
5
6
7

Table C-1
Octal and Decimal Conversion

DEC
0

512
1024
1536
2048
2560
3072
3584

82

OCT
0
1
2
3
4
5
6
7

DEC
0
64
128
192
256
320
384
448

81

OCT
0
1
2
3
4
5
6
7

DEC
0
8
16
24
32
40
48
56

8°
OCT
0
1
2
3
4
5
6
7

DEC
0
1
2
3
4
5
6
7

C-1 Second Edition

C OCTAL TABLES

For octal addition with Table C-2, find the numbers in the first lines across and down that
correspond to the two numbers you want to add. Then find the sum at the intersection of the
lines that start with those two numbers. If the sum has more than one digit, the left digit may
be carried or added to the next column. Thus, to add '45 and '56, first sum 5 and 6 to get '13.
Carry the 1. Add 4 and 5 to get '11, and then add the 1 that was carried, to get '12. Thus the sum
of '45 and '56 is '123.

0

1
2
3
4
5
6
7

1

2
3
4
5
6
7

10

Table C-2
Octa l A d d i t i o n Table

2 3 4 5

3 4 5 6
4 5 6 7
5 6 7 10
6 7 10 11
7 10 11 12

10 11 12 13
11 12 13 14

6

7
10
11
12
13
14
15

7

10
11
12
13
14
15
16

DOC3524-192 C-2

D
SAMPLE

PROGRAMS

Example 1

This program is stored as TMDT.F77. It is used as the example for the map in Figure 3-10. It is
also used in Chapter 3 as the example in Looking for Wasted Space and in Chapter 4 in
PERFORMING A MIXED LOAD.

PROGRAM MAIN
INTEGER*2 ARRAY(129)
INTEGER*2 STRING(28)
INTEGER*2 NUM, DATE(3)
INTEGER*2 TIME, TIME1, TIME2, NAME(16)
EQUIVALENCE (STRING!1), DATE)
EQUIVALENCE (STRING(4), TIME)
EQUIVALENCE (STRING(5), TIME1)
EQUIVALENCE (STRING(6), TIME2)
EQUIVALENCE (STRING(13), NAME)
COMMON /AA/STRING, /BB/NUM, /AABB/ARRAY
NUM = 28
CALL TIMDAT(STRING, NUM)
WRITE (1 ,300) DATE
WRITE (1,400)
WRITE (1,200) TIME, TIME1, TIME2
WRITE (1,150) NAME

200 FORMAT (16, 16, 16)

D-l Second Edition

D SAMPLE PROGRAMS

300 FORMAT ('DATE IS ', 3A2)
150 FORMAT ('USER IS ', 28A2)
400 FORMAT ('TIME SINCE MIDNIGHT IN MINUTES+SECONDS+TICKS: ')

CALL EXIT
END

Example 2

This is filed as MINDLESS.F77. It is a recursive program that soon causes stack overflow. It is
used in Chapter 3 as the example of Looking at the Stack.

PROGRAM MAIN
C MINDLESS PROGRAM TO BLOW UP THE STACK
C COURTESY OF L. B.
C

INTEGER C
CALL PAGE(200, C)
CALL EXIT
END

SUBROUTINE PAGE(COUNT, I)
C
C THIS SUBROUTINE CONTAINS 2048 BYTES OF STACK SPACE, SO IT
C CAUSES ONE PAGE OF STACK SPACE TO BE RESERVED PER INVOCATION
C

INTEGER COUNT, I
INTEGER JUNK(976)
1 = 1 + 1
IF(I .EQ. COUNT) RETURN
WRITE (1,100) I
CALL PAGE(COUNT, I)

100 FORMAT ('VALUE: ',13)
RETURN
END

Example 3

This program is filed as LADD.CBL. It is a COBOL 74 program used in Chapter 3 to illustrate a
split load in Refining Storage Allocation.

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 TEST PIC X.
PROCEDURE DIVISION.

DISPLAY 'SO FAR SO GOOD'.
STOP RUN.

DOC3524-192 D-2

SAMPLE PROGRAMS D

Example 4

This p rogram is filed as CALLER.F77. It calls TMDT.WRONG (Example 5 below). It is used in
the example for Loca t ing R u n t i m e Errors in Chap te r 3.

INTEGER*2 STRING(IO), STRING2(12)
STRING(10) = 'FIRST STEP'
STRING(12) = 'SECOND STEP'
WRITE (1 , 1 0 0) STRING
CALL TMDTWR
WRITE (1,200) STRING2

100 FORMAT (10A2)
200 FORMAT (12A2)

CALL EXIT
END

Example 5

This p rog ram is filed as TMDT.WRONG. It is used in the subsect ion Loca t ing R u n t i m e Errors
in Chapte r 3. It is called by the p rogram in Example 4 above. In tu rn , it calls the subrout ine
TIMDAT, bu t w i t h o u t e n o u g h a rgument s .

PROGRAM TMDTWR
INTEGER*2 STRING(28)
INTEGER*2 NUM, DATE(3)
INTEGER*2 TIME, TIME1,
EQUIVALENCE (STRING(1)
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
NUM = 28
CALL TIMDAT

100
150
200
300
400

(STRING(4),
(STRING(5),
(STRING(6),
(STRING(13)

TIME2, NAME(16)
DATE)
TIME)
TIME1)
TIME2)
, NAME)

WRITE
WRITE
WRITE
WRITE
WRITE
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
CALL EXIT
END

STRING)
100)

300) DATE
400)
200)
150)
')

USER

DATE
TIME

TIME,
NAME

IS ',

IS \
SINCE

TIME1. TIME2

28A2)
16, 16,
3A2)
MIDNIGHT

16

IN MINUTES+SECONDS+TICKS

D-3 Second Edition

D SAMPLE PROGRAMS

Example 6

This program also is filed as TMDT.F77. It is used in Chapter 4 as the example for MAKING A
RUNIT FILE.

PROGRAM MAIN
INTEGER*2 STRING(28)
INTEGER*2 NUM, DATE(3)
INTEGER*2 TIME, TIME1,
EQUIVALENCE (STRING(1)
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
NUM = 28
CALL TIMDAT(STRING,

100
150
200
300
400

(STRING(4),
(STRING(5),
(STRING(6),
(STRING(13)

TIME2, NAME(16
DATE)
TIME)
TIME1)
TIME2)
. NAME)

WRITE
WRITE
WRITE
WRITE
WRITE
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
CALL EXIT
END

100)
300) DATE
400)
200)
150)
')

USER

TIME
NAME

IS '

NUM)

TIME1. TIME2

DATE
TIME

IS

28A2)
16, 16
3A2)

16)

SINCE MIDNIGHT IN MINUTES+SECONDS+TICKS

Example 7

This example consists of two programs, both used in the CPL file in Appendix E. Both are
named MAIN internally, so they can be shared if necessary.

The first program is filed as ACCT.F77:

PROGRAM MAIN
WRITE (1,100)
CALL EXIT

100 FORMAT ('THIS IS ACCT-NO')
END

The next program is filed as LOGIN.F77:

PROGRAM MAIN
WRITE (1,100)
CALL EXIT

100 FORMAT ('SO FAR SO GOOD')
END

DOC3524-192 D-4

SAMPLE PROGRAMS £

panic button program for users of system
mjk 7/20/82

Example 8

This program is filed as RHELP.PLIG. It is used in Chapter 4 as the example for sharing and for
creating external commands.

main: proc options (main);
/**/
/*
/*
/*
/*
/**/

/* "A233..." indicates use of the non-printing ESC character, to take
/* advantage of the visual attributes of a PT45 terminal. Use A233
/* (four characters) to represent the ESC character when entering
/* program text with ED.
/**/

/* "A233d" is the PT45's A-SET function key.
/* A-SET R - reverse blink A-SET S
/* A-SET B - blink
/* A-SET A - half intensity
/**/

For instance:
• reverse half-blink

A-SET a - normal display
A-SET P - reverse video

del (ext, name, prob_num, prob) char (50) var;

del (graf_on, /* Turn on special graphics character set */
graf-Off, /* Turn off special graphics character set */
ul_cor, /* Upper left corner (graphics) */
ur_cor, /* Upper right corner (graphics) */
ll_cor, /* Lower left corner (graphics) */
lr_cor, /* Lower right corner (graphics) */
v_bar, /* Vertical bar (contains graphics mode!) */
curs_up, /* Move cursor up */
rev_vid, /* Turn on reverse video */
u_rev_vid, /* Turn on underline-reverse video */
blink_vid, /* Turn on blinking video */
norm_vid /* Revert to normal video */

) char (8) var;

del (h_bar) char (70) var; /* Horizontal bar (graphics) */

/* Set up the values for a PT45 terminal */
/* (Different values would be required for a PST100 or other
/* t e r m i n a l .) */
graf_on

graf_off
ul_cor

ur_cor

ll_cor

lr_cor

v_bar

curs_up

=
=
=
=
=

=
=
=

' A 2 3 3 R

• A 2 3 3 S

' 3'

•D'
•H'
'L'
1 A 2 3 3 R

' A 2 : J3A'

i

dA233S'

i

D-5 Second Edition

D SAMPLE PROGRAMS

rev_vid =
u_rev_vid =
blink_vid =
norm_vid =
h_bar =

A233dP';
A233dp';
A233dB';
A233d3':

/* 64 chars */

11. Tape',

12. Hardware',

put skip(3) list
(' ' :: graf_on !! ul_cor i! h_bar !! ur_cor I! graf_off);

call mainl;
mainl: proc;

put skip edit(v_bar, v_bar) (col(1),a, col(70),a);
put skip edit(v_bar !! ' What is the nature of the problem:', v_bar)

(col(1),a, col(70),a);
put skip edit(v_bar, v_bar) (col(1),a, col(70),a);
put skip edit (v_bar ! i

' 1. Cartridges 6. Software
v_bar) (col(1),a, col(70),a);

put skip edit (v_bar :!
' 2. Communications 7. Power supply

v_bar) (col(1),a, col(70),a);
put skip edit (v_bar ::

3. CPU 8. Memory',
v_bar) (col(1),a, col(70),a);

put skip edit (v_bar !I
4. Disk 9. Miscellaneous',

v_bar) (col(1),a, col(70),a);
put skip edit (v_bar i :

5. Disk controller 10. Operational',
v_bar) (col(1),a, col(70),a);

put skip edit (v_bar, v_bar) (col(1),a, col(70),a);
put skip edit (v_bar !!

Problem jf' :: blink_vid :i ':' !i norm_vid) (col(1),a);
get skip(0) edit (prob_num)(a);
put edit (curs_up !i v_bar)(col(66),a);
put edit (v_bar, v_bar) (col(1),a, col(70),a);

if prob_num = '1' then do;
prob = 'streamer tape cartridges,1;
name = 'Geoffrey Chaucer';
ext = '3030' ;
end;

else if prob_num = '2' then do;
prob = 'communications problems,';
name = 'Wife of Bath';
ext = '4138 6 4002' ;
end;

else if prob_num = '3' then do;
prob = 'CPU problems,';
name = 'Marie de France';
ext ='3274 S 3033' ;

DOC3524-192 D-6

SAMPLE PROGRAMS D

end;
else if prob_num = '1' then do;

prob = 'disk problems,';
name = 'Hildebrand';
ext = '3027' ;
end;

else if prob_num = '5' then do;

prob = 'disk controller problems,';
name = 'Hildebrand';
ext = '3027' ;

end;
else if prob_num ='6' then do;

prob = 'software problems,';
name ='Geoffrey Chaucer';
ext = '3274 £ 3033' ;
end;

else if prob_num = '7' then do;
prob = 'power supply problems,';
name = 'Chretien de Troyes';
ext = '3037 £ 3400' ;

end;
else if prob_num = '8' then do;

prob = 'memory problems,';
name = 'Marie de France';
ext ='3274 £ 3033' ;
end;

else if prob_num = '9' then do;

prob = 'miscellaneous problems,';
name = 'Chretien de Troyes';
ext = '3037, 3030, £ 3031 *;
end;

else if prob_num = '10' then do;
prob = 'general operational problems,';
name = 'Chretien de Troyes';
ext ='3037 £ 3031' ;

end;
else if prob_num = '11' then do;

prob = 'tape problems,';
name = 'Geoffrey Chaucer';
ext = '3030' ;
end;

else if prob_num = '12' then do;

prob = 'general hardware problems,';
name = 'Pearl Poet';
ext = '3036' ;

end;
else do;
put skip edit (v_bar !!

***' !! b l ink_vid :: 'ERROR' !! norm_vid !! ' * * * ' ,
v_bar) (c o l (1) , a , c o l (7 6) , a) ;

/ * 76 i s 70 + l eng th (b l ink_v id :I norm_vid) */
put sk ip e d i t (v_bar !I

D-7 Second Edition

D SAMPLE PROGRAMS

1 • :: prob_nura !! ' is not a legitimate selection.', v_bar)
(col(1),a, col(70),a);

call mainlj
end;

end mainl;

put skip edit (v_bar, v_bar) (col(1),a, col(70),a);
put skip edit (v_bar ii ' For information on ', prob, v_bar)

(col(1),a, col(29),a, col(70),a);
put skip edit (v_bar ::

' call1 ii u_rev_vid :: ' ' ii name !:' at extension ' ii
ext II '.' :: norm_vid, v_bar)
(col(1),a, col(76),a);

put skip edit (v_bar, v_bar) (col(1),a, col(70),a);
put skip list

(' ' ii graf_on ii ll_cor ii h_bar ii lr_cor ii graf_off);
end main:

Example 9

This example is filed as LARGE.F77. It is used in Chapter 4 as an example of m a n a g i n g c o m m o n
blocks.

C THIS PROGRAM SETS UP TWO ARRAYS. THE ONE CALLED 'ARRAY' IS LARGER
C THAN ONE SEGMENT. BOTH ARE PUT INTO COMMON BLOCKS.
C

PROGRAM MAIN
INTEGER*2 ARRAY(116500), ARY2 (16500)
CHARACTER*20 STRING 1, STR2, STR3, STR4
EQUIVALENCE(STRING 1, ARRAY(1))
EQUIVALENCE(STR2, ARRAY(116470))
EQUIVALENCE(STR3, ARY2(1))
EQUIVALENCE(STR4,ARY2(16470))
COMMON/AA/ARRAY
COMMON/BB/ARY2
STRING1 = 'START OF LARGE ARRAY'
STR2 = 'END OF LARGE ARRAY'
STR3 = 'START OF ARRAY 2'
STR4 = 'END OF ARRAY 2'
WRITE(1,100) STRING1
WRITE(1,100) STR2
WRITE(1,100) STR3
WRITE(1,100) STR4

100 FORMAT(A20)
CALL EXIT
END

DOC3524-192 D-8

SAMPLE PROGRAMS D

Example 10

This example contains four routines. The first three are used in Chapter 4 as examples of
sharing two programs in the same segment, extending the stack, and relocating the stack. All
four are used in the section on REPLACING PROGRAM MODULES, also in Chapter 4.
SUBI.PLIG and SUBIA.PLIG have the same ECB label (subl) so that one may replace the other
in a load.

This is MAIN.PL1G:

main: procedure options(main);
del subl external entry;
del sub2 external entry;
put skip list ('this is main1);
call subl;
call sub2;
put skip list ('end of run');

end main;

This is SUBI.PLIG:

subl: procedure;
put skip list ('this is subl');
end subl:

This is SUB2.PL1G:

sub2: procedure;
put skip list ('this is sub2');
end sub2;

This is SUBIA.PLIG:

subl: procedure;
put skip list ('this is replacement');
end subl;

D-9 Second Edition

E
A CPL PROGRAM

FOR SHARING

* **
* THIS CPL PROGRAM ALLOWS YOU TO COMPILE, LOAD, AND SHARE AN EXTERNAL
* LOGIN PROGRAM AND ACCOUNT PROGRAM (EXAMPLE 7 IN APPENDIX D). IT ASKS
* FOR A SEGMENT NUMBER, AND YOUR CHOICE OF SEGMENT NUMBER DETERMINES
* WHETHER YOU GET A SHARED OR A NONSHARED RUNFILE. BEFORE RUNNING THE
* FILE, YOU MUST DEFINE AN EMPTY GLOBAL VARIABLE FILE. THANKS TO J. B.
* **
*
COMO INSTALL.COMO
6SET_VAR .CMDPAS. := [TRIM [RESPONSE 'CMDNCO UFD PASSWORD']]
£SET_VAR .SYSPAS. := [TRIM [RESPONSE 'SYSTEM UFD PASSWORD1]]
*
*
£SET_VAR .SEGNO. := 7 77 7
* ***
* ACCEPT SEGMENT NUMBER FROM CONSOLE OR FILE
* ***
TYPE
TYPE PROCEDURE SEGMENT NUMBER MAY BE ONE OF:
TYPE

-- NON-SHARED VERSION
-- SHARED VERSION, OVERRIDE DPTX SEGMENT (DEFAULT)
-- SHARED VERSION, CHOOSE AVAILABLE USER SEGMENT
-- SHARED VERSION, " " "

E-l Second Edition

TYPE
TYPE
TYPE
TYPE

4000
2015
2030-2037
2170-2177

E A CPL PROGRAM FOR SHARING

TYPE
TYPE PRESS RETURN TO GET THE DEFAULT
TYPE
SDO SUNTIL (%.SEGNO.% = 4000) ! ((%.SEGNO.% >= 2030) & ~

(%.SEGNO.% <= 2037)) ! (%.SEGNO.% = 2015) I ~
((%.SEGNO.% >= 2170) 6 (%.SEGNO.% <= 2177))

SSET_VAR .SEGNO. := [TRIM [RESPONSE 'PROCEDURE SEGMENT NUMBER' 4000]
SEND
*
£SET_VAR .LOC1. := 0
&SET-VAR .LOC2. := 0
SSET_VAR .SPLIT. := 77777
£IF %.SEGNO.%= 4000 STHEN £DO
SS .LOC1. := [TRIM [RESPONSE 'STARTING WORD| FOR WELCOME' 1000]]
£S .LOC2. := [TRIM [RESPONSE 'STARTING WORD jf FOR ACCOUNT' 10000]]
SS .SPLIT. := 3777

SEND
*

* COMPILE THE WELCOME AND ACCOUNT PROGRAMS
* ****$$*$$#$**********$**#$************$$**********#**$$****
TYPE FTN WELCOME -64V
FTN WELCOME -64V
TYPE FTN ACCOUNT -64V
FTN ACCOUNT -64V
4t *

* MAKE ONE- OR TWO-SEGMENT FILE FOR WELCOME, DEPENDING ON VALUE
* OF .SEGNO.
* **
TYPE SEG -LOAD
SDATA SEG -LOAD

SPLIT %.SPLIT.%
AUTOMATIC 10

/* THE NEXT LINE CREATES A ONE- OR TWO-SEGMENT FILE,
/* DEPENDING ON WHETHER .SEGNO. IS 4000 OR NOT

S/LOAD WELCOME J8.LOC1.38 %• SEGNO. % 4000
D/LIBR VAPPLB
D/LIBR
SAVE
MAP 2
MAP 3
MAP WELCOME.MAP
RETURN
SHARE

LG /*IN REV. 19, THIS MAY BE 28 CHARACTERS, PRECEDED BY SPACES
DELETE
QUIT
STTY

SEND

DOC3524-192 E-2

A CPL PROGRAM FOR SHARING E

•
* ***
* DO THE SAME FOR ACCOUNT
* ***
TYPE SEG -LOAD
SDATA SEG -LOAD

SPLIT 58.SPLIT.%
A/SYMBOL DUMMY PR 2030 1200 /*FOR CASE OF TWO PROCS IN ONE SEGMENT
AUTOMATIC 10
S/LO ACCOUNT %.LOC2.ft %.SEGNO.% 4000
D/LIBR VAPPLB
D/LIBR
SAVE
MAP 2
MAP 3
MAP ACCOUNT.MAP
RETURN
SHARE

AC /*IN REV. 19, THIS MAY BE 28 CHARACTERS, PRECEDED BY SPACES
DELETE
QUIT
STTY

SEND
•
* ***
* COPY THE UNSEGMENTED PROGRAMS TO CMDNC0
* ***
SDATA FUTIL /*USE COPY IN REV. 19

FROM *
TO CMDNC0 [UNQUOTE %.CMDPAS.%]
COPY LG4000 WELCOME.SAVE
COPY AC4000 ACCOUNT.SAVE
DELETE LG4000, AC4000
DELETE WELCOME.BIN, ACCOUNT.BIN
FROM CMDNC0
PROTECT WELCOME.SAVE 7 1
PROTECT ACCOUNT.SAVE 7 1
QUIT
STTY

SEND
•
* ***
* IF THIS WAS A SINGLE-SEGMENT FILE ALL IN '4000, WE HAVE FINISHED
* ***
SIF %.SEGNO.%= 4000 STHEN SDO

SDATA MESSAGE -1 NOW
• •••NONSHARED VERSIONS OF EXTERNAL LOGIN AND ACCOUNT REINSTALLED^^
STTY

SEND
COMO -END
SRETURN
SEND

E-3 Second Edition

E A CPL PROGRAM FOR SHARING

*
* **
* NEXT PART IS EXECUTED ONLY IF .SEGNO. IS <4000 (PROGRAM MUST
* BE SHARED)
* **
*

£SET_VAR DATE := [DATE -DOW], [DATE -CAL], [DATE -AMPM]
SSET_VAR DATE := [UNQUOTE %DATE%]
*
SDATA ED
* SHARE EXTERNAL WELCOME AND ACCOUNTING PROGRAM
* REINSTALLED ON XDATEX

OPR 1
SHARE SYSTEM>LG%.SEGNO.% %.SEGNO.%
SHARE SYSTEM>AC*.SEGNO.% %.SEGNO.%
OPR 0
CO -CONTINUE 6
CO -TTY

FILE C_SHAREWELCOME
6TTY

SEND
*

£DATA FUTIL
FROM *
TO SYSTEM [UNQUOTE X•SYSPAS.%]
COPY LGK.SEGNO.%
COPY kC%.SEGNO.%
COPY C_SHAREWELCOME
FROM SYSTEM [UNQUOTE K.SYSPAS.*]
PROTECT AC%.SEGNO.%7 1
PROTECT LGff.SEGNO.%7 1
QUIT
6TTY

SEND
*
6DATA MESSAGE -1 NOW
•YOU MUST RESHARE EXTERNAL WELCOME PROGRAM! CO SYSTEM>C_SHAREWELCOME*
fiTTY

SEND
COMO -END
SRETURN

DOC3524-192 E-4

F
LOCATING THE
DEFAULT SPLIT

This appendix lists the first part of the code for SEGSROSHARES.PMA. This file is supplied
with every Prime machine. However, your System Administrator may have removed it from
the computer in order to save space. Before Rev. 19, the file was named SEG> SHARES.PMA.
The lines that are shaded are the ones that give the default split address for SEG in segment
'4000. This address may change in any version of the software.

* SHARES.PMA, SEGSRC, CEH-LSS-KJC, 01/15/79
* SHARE4 Library - Loaded by the 'SP' command to start SEG runfiles
* Copyright (c) 1981, Prime Computer, Inc., Natick, MA 01760
*
*

REL
RLIT
D64V
SYML
C64R

*
ENT RUNIT
ENT RESUME
EXT STACK_0VF$
EXT MK0NU$
EXT MAIN
EXT EXIT

F-l Second Edition

F LOCATING THE DEFAULT SPLIT

EXT ERRPR$
*

RUNIT EQU
ELM
JMP RUNIT1

DEFINE DEFAULT STACK AND STACK EXTENSION (STAK$)
THEN COPY CERTAIN PARTS TO ALLOW STACK OVERFLOW HANDLER
TO MODIFY COPY OF STACK EXTENSION, THEREBY
PROVIDING S 1000 CAPABILITY.

STAK$ EQU *
OCT 4000 SEGMENT NUMBER
OCT 150000 WORD NUMBER
OCT 0 EXTENSION SEGMENT NOT DEFINED
OCT 4 WHEN DEFINED WILL BEGIN HERE

STACKS EQU *
ENT STACKS
OCT 0 CURRENT STACK SEGM NUM (WILL BE COPIED FROM STAK$+0)
OCT 2 PTR TO EXTENSION PTR IN CURRENT STACK SEGMNT
OCT 0 NEXT EXTENSION SEGMENT(COPIED FROM STAK$+2)
OCT 4 WILL BEGIN HERE

*
*
RUNIT1 STL

STX
*

LDA
STA
LDA
STA
LDL
STLR
LDA
STA
EAXB
LDL
ADL
STL
CRL
LDX

LOOP STA
*

ISAVE
ISAVE+2

STAK$
STACKS
STAK$+2
STACK$+2
STAK$
13
DUMP
SB%+1
DUMP,*
STAK$
= 44L
XBX

= -8
XBff+10,1

COPY THE ORIGINAL STAK$ INFORMATION
SO THAT ON-UNIT HANDLER WON'T CLOBBER
ORIGINAL PARAMETERS.

GET SEGMENT NUMBER AND ADDRESS
SAVE START OF STAR
STACK ROOT IN SEG 4000
AN INCESTUOUS STORE

SET UP WORD 2 IN STACK SEGMENT

NO STACK EXTN TO START
ZERO OUT SOME WORDS
IN AND NEAR STACK ROOT

DOC3524-192 F-2

G
GLOSSARY

• Absolute prefix

The prefixes S/, P / , or D/ when preceded by one of the first two. They cause the segment
number next entered to be taken as an absolute segment number.

• Absolute segment number

A segment number that is assigned to the same virtual segment number. To be absolute, the
number must have been entered with COMMON ABS, the S/ or P/ prefix, or the D/ prefix
after an S / - or P/-prefixed command. See the discussions in Chapters 1 and 4.

• Address

Prime memory is addressable in 16-bit offsets. An address is a pointer to a 16-bit location.

• Base area

A memory area used for indirect addressing references. The base area is mostly required by
Prime's older COBOL, which uses many 16-bit instructions requiring an indirect reference.

• Binary file

The file produced by a compiler or assembler. Binary files must be loaded into runfiles by SEG
or LOAD.

G-l Second Edition

G GLOSSARY

• Common area

See Common block

• Common block

A block of data that may be loaded separately from its program. Common blocks are defined
with the COMMON pseudo-op in PMA, the COMMON statement in FORTRAN, the $E +
switch in Pascal, and the EXTERNAL attribute in PL1G. Common blocks cannot be defined in
COBOL.

• Current directory

The directory to which the user process is attached.

• Current load point

The next available 16-bit address in the procedure or data segments of a V-mode runfile. It
corresponds to PBRK in an R-mode file created by LOAD.

• Current runfile

The runfile (executable file) into which SEG will load the next object file. The current runfile
may be set with the VLOAD or RESTORE commands, and changed with the NEW subcommand
of MODIFY.

• Data segment

See Linkage segment.

• Direct entry link

A label in the PRIMOS operating system code that is used as a subroutine call.

• DTAR

A descriptor table address register, which designates whether its associated segments are
unique or shared. See Chapter 1.

• Dynamic entry point

See Direct entry link.

DOC3524-192 G-2

GLOSSARY G

• ECB

The entry control block for an object file. It includes the following information, where address
is the 16-bit relative offset:

Address

0-1

3

4

5

6-7

8

9-15

Pointer to Called Procedure

Stack Frame Size

Stack Root Segment Number

Argument List Displacement

Number of Arguments

Link Base Reg. of Called Proc

Keys

Reserved

An ECB is usually part of the linkage section of a program. ECBs are defined with the ECB
directive in PMA, with PROGRAM, SUBROUTINE, or ENTRY in FORTRAN, with PROGRAM-
ID in COBOL, with PROCEDURE or ENTRY in PL1G, and with PROGRAM, PROCEDURE, or
FUNCTION in Pascal.

• Entry point

An ECB.

• External Reference

A reference or call to a name that is not in the same binary file, such as an external subroutine
or common block.

• Force load

To load all modules of an object file, whether or not they have been referenced. Forced loading
is needed for library modules in a template or other runfile where not all calls are known when
the libraries are loaded. The F/ prefix is used for forced loading.

• Home directory

Normally, the directory specified as home by the user's login name. However, file-handling
subroutines and the ATTACH command of SEG may set another UFD as home. This is
explained in the Subroutines Reference Guide.

G-3 Second Edition

G GLOSSARY

• Impure FORTRAN library

The library IFTNLB in the UFD named LIB. It contains some non-reentrant system
subroutines.

• Initialized data

A data area to which a value has been assigned.

• Interlude

A program that has its procedure and linkage in segment '4000, and invokes another program
that has a different format. Interlude programs are most often used to run programs that cannot
themselves be run from CMDNCO but that either are shared or are external commands.

• Link base

The register that holds the address of the linkage area.

• Link frame

See Linkage.

• Linkage

The part of a program that contains static variables, ECBs, and link frames.

• Linkage segment

A segment reserved for linkage and common blocks, also called a data segment. By default, SEG
assigns segment '4002 as the first linkage segment, and assigns higher numbers as necessary.

• Linking loader

A loader that resolves external references as it loads.

• LOAD

Prime's old load utility, for R-mode files only.

• Load point

See Current load point above.

• Location

An address consisting of a segment number plus an offset. The offset is normally expressed in
16-bit units.

DOC3524-192 G-4

GLOSSARY G

• Object file

A file containing one or more object modules.

• Object module

A binary module created by compilation or assembly of one source program.

• Pathname

The name of a file, which may include the MFD name, the UFD name, and one or more sub-
UFD names, as well as the filename.

• PBRK (program break)

In a file created by the LOAD utility, the current load point or next available location for
loading. See also Current load point.

• Procedure

The part of a program that contains instructions.

• Procedure base

The register that holds the address of the next executable instruction.

• Procedure segment

A segment reserved for procedure code and the stack. By default, SEG assigns segment '4001 as
the first procedure segment and then assigns higher numbers as available.

• Pure FORTRAN library

The library PFTNLB in the UFD named LIB. It contains reentrant system subroutines.

• R-mode runfile, R-mode image

A file produced by the old LOAD utility. For similar files produced by SEG, see RUNIT file. An
R-mode runfile uses only R-mode instructions and cannot take advantage of virtual memory.

• Recursion

The attribute of a program that can call itself.

• Reentrancy

The attribute of code that keeps it from modifying itself.

G-5 Second Edition

G GLOSSARY

• Reference

A call to another program, or use of a symbol name. If the program or name is not in the same
binary module, it is called an external reference.

• Relative segment number

A segment number that is reassigned by SEG with its default numbers. These numbers usually
begin with '4001 for procedure segment and '4002 for linkage and common blocks, unless the
relative assignment includes a different number after COMMON REL. All segment numbers
entered by users are taken by SEG as relative numbers unless they are preceded by COMMON
ABS, the S/ or P/ prefix, or the D/ prefix after an S/ or P/ command. See the discussion in
Chapter 1.

• Relocating loader

A loader that assigns arbitrary addresses to modules, regardless of the addresses assigned by
the compiler or assembler that produced the modules.

• Resolution

The determining of addresses for symbol names and program names.

• Runfile

An executable version of a program, consisting of the loaded binary files, subroutines, and
library modules used by the program, and any common areas. If produced by SEG with default
parameters, the runfile is also a segment directory (see below).

• RUNIT file

A runfile produced by SEG containing V-mode instructions but with both procedure and
linkage in segment '4000, together with the execution unit RUNIT. This file is small and fast,
may be run with RESUME, and may be used in the UFD named CMDNC0 as a PRIMOS
command. It is a SAM file.

• SAM file

A sequential access file, not a segment directory.

• SEG

Prime's segmented loading utility for V-mode and I-mode files.
/

• Segment

A block of address space consisting of 131,072 bytes. SEG works with virtual segments.

\

DOC3524-192 G-6 M

GLOSSARY G

• Segment directory

A directory divided into unnamed subfiles, suitable for copying into Prime's virtual address
space.

• Sharing

Installing procedure or data in a segment numbered below '4000 and declaring that segment to
be shared. Then more than one user may access the same copy of the code simultaneously.

• Snapping a link

Resolving a direct entry link with PRIMOS. This is done at runtime, whereas traditional
subroutine calls are resolved at load time.

• Source file

A file containing programming statements in the format recognized by PMA or one of Prime's
high-level language compilers.

• Split

To divide a segment into procedure and linkage parts, with the procedure stack allocated in it.

• Split load

A load with procedure and data in the same segment.

G-7 Second Edition

G GLOSSARY

• Stack frame

Storage that is dynamic, that is, assigned when a routine is called and released upon return
from the routine. For each routine called, the stack frame header has the following informa­
tion. Address is the relative 16-bit offset.

Address 0 0

1

2-3

4-5

6-7

8

9

10-12

13-15

Invocation Flags

Stack Root Segment Number

Return Pointer

Caller's Stack Base Reg

Caller's Link Base Reg

Caller's Keys

Location Following Call

Fault Code & Address

Reserved

• Symbol

A name in a binary file or in a runfile.

• Symbol table

SEG's table in which it keeps track of external references and whether they have been resolved.

• System libraries

The libraries IFTNLB, PFTNLB, and SPLLIB, all in the UFD named LIB. They contain operating
system subroutines described in the Subroutines Reference Guide, which are called by all
Prime compilers.

• Template

A partial runfile into which some libraries, supplied by Prime or the user, have been loaded.
The nonshared part (segment '4000 and above) is then copied to a new file. An individual
application program that is to run with the previously loaded libraries may then be loaded into
the new copy. Using the template will save loading time.

DOC3524-192 G-8

GLOSSARY (

• Unsnapped link

An unresolved reference to a direct entry point (see above). These links are resolved or
snapped at runtime rather than load time.

• V mode

The addressing mode normally used on Prime's compilers. Programs in V mode can take full
advantage of virtual address space and of the V-mode instruction set.

• Virtual segment

A segment stored on disk, which may occupy any physical segment when it is brought into live
memory.

G-9 Second Edition

INDEX

INDEX X

Symbols and Numbers

32R mode, 1-6

A/SYMBOL, 4-13,6-2

Abbreviations, xii, 5-2

Absolute loading, 1-7, 6-3

Absolute prefix, defined, G-l

Absolute segment,
defined, G-l
discussion, 1-7
using, 6-2, 6-14

Address, defined, G-l

Addressing Modes,
of LOAD, 9-6
ofSEG, 1-6

Angle brackets, xiii

ATTACH command of LOAD utility,
10-1

ATTACH subcommand of VLOAD, 6-1

AUTOMATIC command of LOAD
utility, 10-1

AUTOMATIC subcommand of VLOAD,
4-24, 6-2

B

Base area,
defined, G-l
usage, 6-2, 6-16, 6-19
with LOAD, 9-6, 10-1, 10-10,

11-3
with SEG, 1-4, 3-5, 4-14, 4-23

Binary file, defined, G-l

Braces, xiii

Brackets, xii

Bullets, xii

CBLLIB, 4-6

CHECK, 10-2

CMDSEG, 4-14, B-l

COBOL 74 examples, 2-4, 3-9,
3-18, D-2

COBOL 74 library, 4-6

Color convention, xii, 5-2

Comments, with LOAD, 9-2, 10-11

Common areas (See Common blocks)

Common blocks,
defined, G-2
defining in Prime languages,

4-15, G-2
in load map from SEG, 3-8
redefined as smaller, 6-10,

6-16
with LOAD, 10-2, 10-10, 11-3
with SEG, 4-6, 6-3, 6-12,

6-18, 8-5

COMMON command of LOAD utility,
10-2

COMMON subcommand of VLOAD, 6-3

Conventions of documentation,
xii

Copying runfiles, 7-1, 7-3

Current directory, defined, G-2

Current load point, defined, G-2

Current runfile, 5-8, G-2

D

D/ prefix of VLOAD, 4-3, 6-4

Date last modified, checking,
5-9

DBG (Source Level Debugger), 2-8

DC command of LOAD utility, 10-2

Default loads,
advantages, 2-8
examples with SEG, 2-3
older procedure with SEG, 2-5
with SEG, 2-1

DELETE command of SEG, 5-5

Deleting symbols (See XPUNGE
subcommand), 6-19

Direct entry link,
defined, G-2
overview, 1-10

Direct entry point, 1-10

Documentation conventions, xii

DTAR (Descriptor Table Address
Register), 1-7, G-2

Duplication of preceding load
parameters, 6-4

Dynamic entry point, 1-10, G-2

Dynamic linking, 1-10

ECB, 1-6, G-3

EDB utility, 4-20

Ellipsis, xiii

EN, 10-3

Entry Control Block (ECB),
defined for each Prime

language, G-3
overview, 1-6

Entry point, defined, G-3

ER, 10-4

Error messages,
fromERRPR$, 8-7
from LOAD, 9-2, 12-1
from PRIMOS, 8-6
from SEG, 2-3, 8-1
system, 8-6

EXECUTE command of LOAD utility,
10-5

EXECUTE subcommand of VLOAD, 6-5

Expunging symbols (See XPUNGE
subcommand)

External commands, 4-14

External reference,
defined, G-3
overview, 1-2
resolving, 2-8

F/ prefix of LOAD utility, 10-5

F/ prefix of VLOAD, 4-21, 6-5

Faulted pointers, 3-8

Filename conventions, xiii, 2-1,
2-5

FILMEM command, 9-2

Force load,
defined, G-3

Forced load,
usage, 6-5

FORTRAN examples, 2-4, 3-2,
3-10, 3-14, 3-16, 4-2, 4-4,
4-7, 4-16, 4-24, D-l, D-7

X-l Second Edition

X INDEX

H

HARDWARE, 10-5

HELP, 5-5

Home directory, G-3

Hyphen, xiii

I-mode, 1-6

IFTNLB, 1-10,6-7

IL, 6-6

Impure code, 1-10

Impure FORTRAN library (IFTNLB),
1-10, 6-6, G-4

INITIALIZE command of LOAD
utility, 10-6

INITIALIZE subcommand of VLOAD,
2-2, 6-7

Initialized data, defined, G-4

Interlude program,
defined, G-4
using, 4-14

K

Keys, 5-7

Language libraries (table), 2-2

Libraries, creating, 4-20

LIBRARY command of LOAD utility,
10-6

LIBRARY subcommand of VLOAD,
2-2, 6-7

Link base, defined, G-4

Link frame, 1-6, G-4

Linkage segment, defined, G-4

Linkage, defined, G-4

Linking loader, 1-2, G-4

LOAD, G-4

LOAD command of LOAD utility,
10-6

LOAD command of SEG (See VLOAD)

LOAD comments, 9-2, 10-11

LOAD COMPLETE message, 3-9

Load maps,
from LOAD, 9-4,11-1
from SEG, 1-5, 3-1

LOAD NOT COMPLETE message, 2-3

Load point, G-4

Load sequence,
with LOAD, 9-3
with SEG, 2-3

LOAD subcommand of VLOAD, 6-7

LOAD utility, xi, 9-1

Locating common blocks with LOAD,
9-7

Location, defined, G-4

Lowercase, xii

M

MAP command of LOAD utility,
10-7

MAP command of SEG, 5-6

Map options,
of LOAD utility, 10-7
with SEG, 3-9,5-6

MAP subcommand of VLOAD, 6-8

MIX, 6-8

Mixed loads, 3-16, 4-2

MODE, 10-7

MODIFY, 5-7

MODIFY subcommands, list of, 5-4

Modules,
binary, 1-2
replacing program, 4-19

MV, 6-8

N
Naming conventions, xiii

NEW, 4-22,7-1

NSCW, 6-10

o
Object file,

defined, G-5
overview, 1-2

Object module, defined, G-5

Operands for SEG commands, 5-4

OPERATOR, 6-10

Optimizing runfile size, 4-2

Order of loading,
LOAD, 9-3
SEG, 2-3

P/ prefix of LOAD utility, 10-8

P/ prefix of VLOAD, 6-10

Page boundaries, loading on,
6-10

Pages, 1-7

Paging, 1-7

Paging disk, 1-7

PARAMS, 5-7

Parentheses, xiii

Pascal examples, 2-3, 3-12, 4-16

Pascal library, 4-6

PASLIB, 4-6

PATCH, 7-2

Patching, 5-8

Pathname, defined, G-5

PAUSE, 10-8

PBRK,
defined, G-5
usage, 11-1

PBRK command of LOAD utility,
10-8

PFTNLB (See Pure FORTRAN
Library)

PL, 6-12

PL1G examples, 2-4, 4-11, 4-13,
4-15, 4-19, D-5, D-9

PL1G library, 4-6

PL1GLB, 4-6

PMA examples, 2-3

Prime documentation conventions,
xii

PRIMOS-level commands, creating,
4-14

Procedure,

defined, G-5

Procedure base, defined, G-5

Procedure frame, 1-6

Procedure segment, G-5

PSD, 5-7

Pure code, 1-10

DOC3524-192 X-2

INDEX X

Pure FORTRAN library (PFTNLB),
1-10, G-5

Pure libraries, 6-12

QUIT command of LOAD utility,
10-9

QUIT command of SEG, 5-7

QUIT subcommand of VLOAD, 6-12

R

R-mode, 1-6

R-mode files,
from LOAD, 9-1
from SEG, (See also RUNIT files)

R-mode image, G-5

R-mode runfile, G-5

R/SYMBOL, 6-12

Recursion, 1-10, G-5

Reentrancy, 1-10, G-5

Reference, 1-2, G-6

Relative loading, 4-24, 6-3

Relative segment, 1-7, 4-24,
6-12, G-6

Reloading modules, 4-19

Relocating loader, defined, G-6

Replacing modules with RL, 4-19,
6-13

Resolution, defined, G-6

RESTORE, 5-7

RESUME, 5-8

RETURN subcommand of MODIFY, 7-2

RETURN subcommand of VLOAD, 6-13

RL, 6-13

RR command of LOAD, 10-9

Runfile,
defined, G-6
from LOAD, 9-6
from SEG, 1-2, 1-3

RUNIT, 1-4,6-17,6-18

RUNIT file,
characteristics, 1-4
creating, 4-3 to 4-6
defined, A-l, G-6

Runtime parameter, 1-5

Rust color convention, xii, 5-2

S/ prefix of VLOAD, 4-3, 6-14

SAM file, G-6

SAVE command of LOAD utility,
10-9

SAVE command of SEG, 5-8

SAVE subcommand of VLOAD, 6-15

SCW, 6-16

Sector zero base areas, 6-19

SEG, G-6
list of functions, A-l
overview, xi, 1-2
syntax, 5-4

SEG-level commands, list of, 5-2

Segment allocation,
diagram with SEG, 2-7
with SEG, 1-8, 1-9, 2-6, 4-9

Segment assignment, (See
Relative Loading and Absolute
Loading)

Segment directory, 1-2, 1-3, G-7

Segment, defined, G-6

Segmented runfiles, 1-3

SETBASE command of LOAD utility,
10-10

SETBASE subcommand of VLOAD,
4-24, 6-16

SHARE command of PRIMOS, 4-10

SHARE command of SEG, 4-3, 5-8

Shared data, 4-15

Shared segments, 1-8, 1-9

Sharing,
defined, G-7
two programs in the same

segment, 4-13

SINGLE, 5-8

Single-segment runfiles, 1-4

SK, 4-19,7-2

Snapping a link, 1-10, G-7

Source file, G-7

Source Level Debugger (DBG),
2-8, 6-17

SPLIT, 4-3, 4-6, 4-10, 4-16,
6-16

Split load, defined, G-7

Split segment, G-7

SS command of LOAD utility,
10-10

SS subcommand of VLOAD, 6-17

Stack,
changing, 7-2
default for split segment, F-l
defined, 2-6
extending, 4-18
in load maps, 3-4, 3-14
relocating, 4-19
setting the location, 6-15

Stack frame, 1-6, G-8

STACK subcommand of VLOAD, 4-18,
6-17

START, 7-3

Start address, 4-5, 7-3

Subroutines, 1-10

SYMBOL command of LOAD utility,
10-10

SYMBOL subcommand of VLOAD, 6-18

Symbol table, 2-7, 3-4, G-8

Symbol, defined, G-8

Symbolic debugger, 1-5

System error messages, 8-6

System libraries, 2-2, 2-7, G-8

System privileges, changing,
6-10

SZ command of LOAD utility,
10-11

SZ subcommand of VLOAD, 6-19

Templates, 4-20, G-8

TIME, 5-9

u
UII (Unimplemented Instruction

Interrupt), 9-7

Unsnapped link, defined, G-9

Uppercase, xii

X-3 Second Edition

X INDEX

V-mode, 1-6, G-9

VAPPLB, 2-4

VERSION, 5-9

Virtual segment, 1-7, G-9

VIRTU ALBASE, 10-11

VLOAD, 2-2,5-2,5-9

VLOAD subcommands, list of, 5-3

VPSD, 1-5,5-7

w
WRITE, 7-3

XPUNGE command of LOAD utility,
10-11

XPUNGE subcommand of VLOAD, 6-19

DOC3524-192 X-4

READER RESPONSE FORM
D O C 3524-192 SEG and L O A D Reference G u i d e

Your feedback will help us continue to improve the quality, accuracy, and organization
of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?.

Would you like to be on a mailing list for Prime's current documentation catalog and
ordering information? yes no

Name: Position:

Company:

Address: _ _ _ _ _ _ ^ _ _ _ _

Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

RIME 111

Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM
DOC 3524-192 SEG and LOAD Reference Guide

Your feedback will help us continue to improve the quality, accuracy, and organization
of our user publications.

1. How do you rate the document for overall usefulness?

excellent very good good fair poor

2. Please rate the document in the following areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features did you find most useful?

4. What faults or errors gave you problems?.

Would you like to be on a mailing list for Prime's current documentation catalog and
ordering information? yes no

Name: Position:

Company:

Address:

Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

RIME 111

Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

READER RESPONSE FORM
DOC 3524-192 SEG and LOAD Reference Guide

Your feedback wil l h e l p us con t inue to improve the qual i ty , accuracy, and organizat ion
of our user publ icat ions .

1. H o w do you rate t he d o c u m e n t for overall usefulness?

excellent very good good fair poor

2. Please rate the d o c u m e n t in the fol lowing areas:

Readability: hard to understand average very clear

Technical level: too simple about right too technical

Technical accuracy: poor average very good

Examples: too many about right too few

Illustrations: too many about right too few

3. What features d id you find most useful?

4. What faults or errors gave you problems? .

Would you like to be on a mai l ing list for Pr ime 's cur ren t documen ta t ion catalog and
order ing informat ion? yes no

Name: . Posit ion: ^ _ _ _ _

Company:

Address: ,

. Zip:

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bldg 10B
Prime Park, Natick, Ma. 01760

\

1

: - :

•

I

• \ .

\ •:'

X

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	x
	About This Book
	xi
	xii
	xiii
	xiv
	Part I
	SEG
	Chapter 1
	Overview of SEG
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	Chapter 2
	Default Loads
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	Chapter 3
	SEG Load Maps
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	Chapter 4
	Advanced SEG Techniques
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	Chapter 5
	SEG and SEG-level Commands
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	Chapter 6
	The VLOAD or LOADER Processor
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	Chapter 7
	The MODIFY Processor
	7-1
	7-2
	7-3
	Chapter 8
	Error Messages
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	Part II
	LOAD
	Chapter 9
	Loading R-mode Programs
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	Chapter 10
	LOAD Commands
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	Chapter 11
	R-mode Load Maps
	11-1
	11-2
	11-3
	11-4
	Chapter 12
	LOAD Error Messages
	12-1
	12-2
	12-3
	12-4
	Appendixes
	Appendix A
	SEG's Functions
	A-1
	A-2
	A-3
	A-4
	A-5
	Appendix B
	Use of CMDSEG
	B-1
	B-2
	B-3
	Appendix C
	Octal Tables
	C-1
	C-2
	Appendix D
	Sample Programs
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	Appendix E
	A CPL Program For Sharing
	E-1
	E-2
	E-3
	E-4
	Appendix F
	Locating the Default Split
	F-1
	F-2
	Appendix G
	Glossary
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	Index
	X-1
	X-2
	X-3
	X-4
	Reader Response Forms
	
	
	
	
	
	Back Cover

